Genetic diversity and relationship between cultivated clones of Dalbergia sissoo of wide geographical origin using RAPD markers

H. S. Ginwal , S. S. Maurya , P. Chauhan

Journal of Forestry Research ›› 2011, Vol. 22 ›› Issue (4) : 507 -517.

PDF
Journal of Forestry Research ›› 2011, Vol. 22 ›› Issue (4) : 507 -517. DOI: 10.1007/s11676-011-0171-y
Original Paper

Genetic diversity and relationship between cultivated clones of Dalbergia sissoo of wide geographical origin using RAPD markers

Author information +
History +
PDF

Abstract

Random Amplified Polymorphic DNA (RAPD) polymorphism was employed to assess the genetic diversity in the elite germplasm of Dalbergia sissoo. Sixty-seven clones that are under cultivation in northern India, originated from six different states of India and Nepal were analyzed with 30 RAPD primers that generated a total of 342 fragments out of which 290 were polymorphic. Total genetic diversity (Ht) varied between 0.01 and 0.37, with an average of 0.19. Shannon’s Information index (I) varied between 0.02 and 0.54, with an average of 0.31. Marker attributes like Polymorphism Information Content (PIC), Marker Index (MI) and Effective Multiplex Ratio (EMR) values were calculated to assess the discriminatory power of 30 primers used. The PIC values ranged from 0.01 to 0.37 with an average of 0.17 per primer and the EMR ranged from 0.17 to 21.00 with a mean of 8.66 across all genotypes. Closely related clones were C49 and C51 with similarity index of 0.86 while the least similar or most dissimilar clones were C14 and S-DB showing similarity index of 0.58. The UPGMA-phenogram categorized the 67 clones into six clusters based on genetic similarity and dissimilarity. The clustering of clones in relation to their geographical location has been discussed.

Keywords

clones / Dalbergia sissoo / genetic diversity / polymorphic / RAPD

Cite this article

Download citation ▾
H. S. Ginwal, S. S. Maurya, P. Chauhan. Genetic diversity and relationship between cultivated clones of Dalbergia sissoo of wide geographical origin using RAPD markers. Journal of Forestry Research, 2011, 22(4): 507-517 DOI:10.1007/s11676-011-0171-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arif M., Zaidi N.W., Singh Y.P., Haq Q.M.R., Singh U.S.. A comparative analysis of ISSR and RAPD markers for study of genetic diversity in Shisham (Dalbergia sissoo). Plant Mol Biol Rep, 2009, 27(4): 488-495.

[2]

Ashraf M., Abdul S.M., Rabia R., Sobia T.. A molecular study of genetic diversity in shisham (dalbergia sissoo) plantation of NWFP, Pakistan. Pakistan Journal of Botany, 2010, 42(1): 79-88.

[3]

Boland D.J.. Eucalypt seed for Indian populations from better Australian natural seed sources. Indian Forester, 1981, 107(3): 125-134.

[4]

Caron H., Bandou E., Kremer A.. Gourlet F.S., Guehl J.M., Laroussinie O.. Multilocus assessment of levels of genetic diversity in tropical trees in Paracou stands. Ecology and Management of a Neotropical Rainforest. 2004, Amsterdam: Elsevier, 160 171

[5]

Castiglione S., Wang G., Damini G., Bandi C., Bisoffi S., Sala F.. RAPD fingerprints for identification and for taxonomic studies of elite poplar (Populus spp.) clones. Theor Appl Genet, 1993, 87: 54-59.

[6]

Cavers S., Navarro C., Lowe A.J.. A combination of molecular markers (cpDNA, PCR-RFLP, AFLP) identifies evolutionarily significant units in Cedrela odorata L. (Meliaceae) in Costa Rica. Conserv Genet, 2004, 4: 571-580.

[7]

Deshwal R.P.S., Singh R., Malik K., Randhawa G.J.. Assessment of genetic diversity and genetic relationships among 29 population of Azadirachta indica A. Jess. using RAPD markers. Genetic Resources and Crop Evolution, 2005, 52: 285-292.

[8]

Dhillon R.S., Bisla, Dhanda S.K., Singh V.P.. Genetic variation and heritability of some growth traits in shisham (Dalbergia sissoo ROXB. Annals of Biol, 1995, 11(1): 107-110.

[9]

Esselman E.J., Li J.Q., Crawford D., Winduss J.L., Wolfe A.D.. Clonal diversity in the rare Calamagrostis porteri ssp. Insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. Mol Ecol, 1999, 8: 443-451.

[10]

Ginwal H.S., Maurya S.S.. Ansari S.A., Narayanan C., Mandal A.K.. RAPD markers for genetic diversity in Eucalyptus tereticornis Sm. of Australian and Papua New Guinea origin. Forest Biotechnology in India. 2008, Delhi: Satish Serial Publishing House, 75 87

[11]

Ginwal H.S., Maurya S.S.. Evaluation and optimization of DNA extraction method for Dalbergia sissoo leaf. Indian Journal of Biotechnology, 2010, 9: 69-73.

[12]

Gupta P.K., Varshney R.K.. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica, 2000, 113: 163-185.

[13]

Heybroek H.M.. Primary considerations: multiplication and genetic diversity. Unasylva, 1978, 30: 27-33.

[14]

Keil M., Griffin A.R.. Use of random amplified polymorphic DNA (RAPD) markers in the discrimination and verification of genotypes in Eucalyptus. Theor Appl Genet, 1994, 88: 116-122.

[15]

Kremer A., Caron H., Cavers S., Colpaert N., Gheysen G., Gribel R., Lemes M., Lowe A.J., Margis R., Navarro C., Salgueiro F.. Monitoring genetic diversity in tropical trees with multilocus dominant markers. Heredity, 2005, 95: 274-280.

[16]

Li A., Ge S.. Genetic variation and clonal diversity of Psammochloa villosa (Poaceae) detected by ISSR markers. Ann Bot, 2001, 87: 585-590.

[17]

Libby W.J.. Heybroek H.M., Stephan B.R., von Weissenberg K.. What is a safe number of clones per plantation?. Resistance to Diseases and Pests. 1982, The Netherlands: Pudoc. Wageningen, 342 360

[18]

Libby WJ. 1985. Potential of clonal forestry. In: L. Zsuffa, R.M. Rauter, and C.W. Yeatman (Eds.), Clonal Forestry: its Impact on Tree Improvement and our Future Forests. Proc. 19th Meeting Canadian Tree Improvement Association, Part 2, pp.1–11.

[19]

Lowe A.J., Jourde B., Breyne P., Colpaert N., Navarro C., Cavers S.. Fine scale genetic structure and gene flow within Costa Rican populations of Mahogany (Swietenia macrophylla). Heredity, 2003, 90: 268-275.

[20]

Margis R., Felix D.B., Caldas J.F., Salgueiro F., Dearaujo D.S.D., Breyne P., et al. Biodiversity on three neighboring populations of Eugenia uniflora (pitanga) from Brazilian Atlantic rain forest accessed by AFLP markers. Biodivers and Conserv, 2002, 11: 149-163.

[21]

Mosseler A., Egger K.N., Hughes G.A.. Low levels of genetic diversity in red pine confirmed by Random Amplified Polymorphic DNA markers. Can J For Res, 1992, 22: 1332-1337.

[22]

Nanda M.R., Nayak S., Rout G.R.. Studies on genetic relatedness of Acacia tree species using RAPD markers. Biologia Bratislava, 2004, 59: 115-120.

[23]

Nei M.. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, USA, 1973, 70: 3321-3323.

[24]

Nei M., Li W.H.. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Nat Acad Sci USA, 1979, 76: 5269-5273.

[25]

Okun D.O., Kenya E.U., Oballa P.O., Odee D.W., Muluvi G.M.. Analysis of genetic diversity in Eucalyptus grandis (Hill ex Maiden) seed sources using inter simple sequence repeats (ISSR) molecular markers. African Journal of Biotechnology, 2008, 7(13): 2119-2123.

[26]

Parajuli AV, Bhatta B, Adhikari MK, Tuladhar J, Thapa HB. 1999. Causal agents responsible for the die-back of Dalbergia sissoo in Nepal’s eastern Terai. Ban Ko Janakari, 9(1).

[27]

Parsons B.J., Newbury H.J., Jackson M.T., Ford-Lloyd B.V.. Contrasting genetic diversity relationships are revealed in rice (Oryza sativa L.) using different marker types. Mol Breed, 1997, 3: 115-125.

[28]

Rajgopal J., Bashyam L., Bhatia S., Khurana D.K., Srivastava P.S., Lakshmikumaran M.. Evaluation of genetic diversity in the Himalyan Poplar using RAPD markers. Silvae Genetica, 2000, 49(2): 60-66.

[29]

Rohlf F.J.. NTSYSpc: numerical taxonomy and multivariate analysis system, version 2.02. 1997, Setauket, New York, USA: Exeter Software

[30]

Roldan-Ruiz I., Dendauw J., Vanbockstaele E., Depicker A., De loose M.. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed, 2000, 6: 125-134.

[31]

Rout G.R., Bhatacharya D., Nanda R.M., Nayak S., Das P.. Evaluation of genetic relationships in Dalbergia species using RAPD markers. Biodiversity and Conservation, 2003, 12: 197-206.

[32]

Sagta H.C., Nautiyal. Growth performance and genetic divergence of various provenances of Dalbergia Sissoo ROXB. at nursery stage. Silvae Genetica, 2001, 50(3–4): 93-99.

[33]

Scheepers D., Eloy M.C., Briquet M.. Use of RAPD patterns for clone verification and in studying provenance relationship in Norway spruce (Picea abies). Theor Appl Genet, 1997, 94: 480-485.

[34]

Schnell R.J., Ronning C.M., Knight R.J. Jr.. Identification of cultivars and validation of genetic relationship in Mangifera indica L. using RAPD markers. Theor Appl Genet, 1995, 90: 269-274.

[35]

Shiv-Kumar P., Banerjee A.C.. Provenance trials of Acacia nilotica. J Tree Sci, 1986, 5(1): 53-56.

[36]

Ude G.N., Kenworthy W.J., Costa J.M., Cregan P.B., Alvernaz J.. Genetic diversity of soybean cultivars from China, Japan, North America, and North American ancestral lines determined by amplified fragment length polymorphism. Crop Sci, 2003, 43: 1858-1867.

[37]

Upadhyay A., Jayadev K., Manimekalai R., Parthasarathy V.A.. Genetic relationship and diversity in Indian coconut accessions based on RAPD markers. Scientia Horticulturae, 2004, 99: 353-362.

[38]

Vaishali, Khan S., Sharma V.. RAPD based assessment of genetic diversity of Butea monosperma from different agro-ecological regions of India. Indian Journal of Biotechnology, 2008, 7: 320-327.

[39]

Varshney R.K., Chabane K., Hendre P.S., Aggarwal R.K., Graner A.. Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci, 2007, 173: 638-649.

[40]

Whitkus R., Cruz M.L., Bravo M., Gomez-Pompa A.. Genetic diversity and relationships of cacao (Theobroma cacao L. in southern Mexico. Theor Appl Genet, 1998, 96: 621-627.

[41]

Williams J.G.K., Kubelik A.R., Livak K.J., Rafalski J.A., Tingey S.V.. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nuc Ac Res, 1990, 18: 6531-6535.

[42]

Zehdi S., Sakka H., Mohamed Salem A.O., Rhouma A., Marrakchi M., Trifi M.. Molecular polymorphism and genetic relationships in a Tunisian date palm (Phoenix dactylifera L.) collection using ISSR amplification fingerprinting. IPGR News Lett, 2004, 144: 39-44.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/