Seasonal variation of microelement contents in leaves of Cyclocarea paliurus among the provenances

Sheng-zuo Fang , Xiu-li Chu , Xu-lan Shang , Wan-xia Yang , Xiang-xiang Fu , Cheng-qi She

Journal of Forestry Research ›› 2011, Vol. 22 ›› Issue (2)

PDF
Journal of Forestry Research ›› 2011, Vol. 22 ›› Issue (2) DOI: 10.1007/s11676-011-0154-z
Original Paper

Seasonal variation of microelement contents in leaves of Cyclocarea paliurus among the provenances

Author information +
History +
PDF

Abstract

Cyclocarya paliurus as a multiple function plant can accumulate biologically important microelement elements. To reveal the variation of selected microelement concentrations in leaves of C. paliurus provenances during the growing season, 12 C. paliurus provenances in the field trial were sampled five times at approximately 1-month intervals. The method of inductively coupled plasma optical emission spectrometer (ICP-OES) was employed to determinate average concentrations of Fe, Mn, Zn, Cu and Se in leaves of 12 C. paliurus provenances. The results show that on average, the concentrations of five microelement in the leaves follows an order of Fe > Mn > Zn > Cu > Se. Variance analysis shows that there are significant differences in Fe, Mn and Zn concentrations among the twelve provenances (p<0.05), while there is no significant difference between Cu and Se concentrations. A significant difference was also observed in the concentrations of five microelements at the different sampling times (p<0.001), but the mean concentrations for each microelement showed different temporal dynamic patterns. Meanwhile, a significant correlation between concentrations of Se and other measured microelements was detected in the leaves of C. paliurus, except for Mn. Obtained results not only demonstrated that leaves of C. paliurus exhibited higher levels of microelements (Fe, Mn, Cu, Zn and Se), but also provided a basis for breeding strategies of superior provenances with rich content of microelements, and choosing optimum harvesting time for food industry in future.

Keywords

Cyclocarea paliurus / mineral nutrition / provenance / concentration / ICP-OES (coupled plasma optical emission spectrometer)

Cite this article

Download citation ▾
Sheng-zuo Fang, Xiu-li Chu, Xu-lan Shang, Wan-xia Yang, Xiang-xiang Fu, Cheng-qi She. Seasonal variation of microelement contents in leaves of Cyclocarea paliurus among the provenances. Journal of Forestry Research, 2011, 22(2): DOI:10.1007/s11676-011-0154-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Birari R.B., Bhutani K.K.. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today, 2007, 12: 879-889.

[2]

Cakmak I.. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification. Plant Soil, 2008, 302: 1-17.

[3]

Combs G.F.. Selenium in global food systems. Brit. J. Nutr., 2001, 85: 517-547.

[4]

Ding C., Chen E., Lindsay R.C.. Natural accumulation of terpene trilactones in Ginkgo biloba leaves: variations by gender, age and season. Eur. Food Res Technol, 2007, 224: 615-621.

[5]

Fang S., Fu Xiangxiang.. Progress and prospects on silviculture and utilization of Cyclocarya paliurus resources. J Nanjing For Univ (Nat Sci Ed), 2007, 31(1): 95-100.

[6]

Fang S., Wang J., We Z., Zhu Z.. Methods to break seed dormancy in Cyclocarya paliurus (Batal.) Iljinskaja. Sci Hortic, 2006, 110(3): 305-309.

[7]

Fang S., Yang W., Chu X., Shang X., She C., Fu X.. Provenance and temporal variations in selected flavonoids in leaves of Cyclocarya paliurus. Food Chemistry, 2011, 124: 1382-1386.

[8]

Hardisson A., Rubio C., Martin A.B.M.M., Alvarez R.. Mineral composition of the papaya (Carica papaya variety sunrise) from Tenerife island. Eur Food Res Technol, 2001, 212: 175-181.

[9]

Hernández-Carmona G., Carrillo-DomÍnguez S., Arvizu-Higuera D.L., RodrÍguez-Montesinos Y.E., Murillo-Álvarez J.I., Muñoz-Ochoa M., Castillo-DomÍnguez R.M.. Monthly variation in the chemical composition of Eisenia arborea J.E. Areschoug. J App. Phycol, 2009, 21: 607-616.

[10]

Hotz C., Brown K.H.. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull, 2004, 25: S94-S203.

[11]

Jiang S.L., Wu J.G., Thang N.B., Feng Y., Yang X.E., Shi C.H.. Genotypic variation of mineral elements contents in rice (Oryza sativa L.). Eur Food Res Technol, 2008, 228: 115-122.

[12]

Jiang Z.Y., Zhang X.M., Zhou J., Qiu S.X., Chen J.J.. Two new triterpenoid glycosides from Cyclocarya paliurus. J Asian Nat Prod Res, 2006, 8(1–2): 93-98.

[13]

Kalny P., Fijałek Z., Daszczuk A., Ostapczuk P.. Determination of selected microelements in polish herbs and their infusions. Sci Total Environ, 2007, 38: 99-104.

[14]

Kurihara H., Asami S., Shibata H., Fukami H., Tanaka T.. Hypolipemic effect of Cyclocarya paliurus (Batal.) Iljinskaja in lipid-loaded mice. Biol. Pharm Bull, 2003, 26(3): 383-385.

[15]

Kurihara H., Fukami H., Kusumoto A., Toyoda Y., Shibata H., Matsui Y.. Hypoglycemic action of Cyclocarya paliurus (Batal.) Iljinskaja in normal and diabetic mice. Biosci Biotech Bioch, 2003, 67(4): 877-880.

[16]

Lovkova M.Y., Buzuk G.N., Sokolova S.M., Kliment’eva N.I.. Chemical Features of Medicinal Plants (Review). Appl Biochem Microbio, 2001, 37(3): 229-237.

[17]

Lu K.Y., Li L.Z., Zheng X.F., Zhang Z.H., Mou T.M., Hu Z.L.. Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. J Genet, 2008, 87: 305-310.

[18]

Osaki M., Yamada S., Ishizawa T., Watanabe T., Shinano T., Tuah S.J., Urayama M.. Mineral characteristics of the leaves of 166 plant species with different phylogeny in the temperate region. Plant Food Hum Nutr, 2003, 58: 139-152.

[19]

Oury F.X., Leenhardt F., Rémésy C., Chanliaud E., Duperrier B., Balfourier F., Charmet G.. Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat. Eur J Agron, 2006, 25: 177-185.

[20]

Słupski J., Lisiewska Z., Kmiecik W.. Contents of macro and microelements in fresh and frozen dill (Anethum graveolens L.). Food Chem, 2005, 91: 737-743.

[21]

Sultana B., Anwar F.. Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem, 2008, 108: 879-884.

[22]

Thomidis T., Tsipouridis C., Darara V.. Seasonal variation of nutrient elements in peach fruits (cv. May Crest) and its correlation with development of Brown rot (Monilinia laxa). Sci Hortic, 2007, 111: 300-303.

[23]

Wang L., Wu J.P., Liu Y.X., Huang H.Q., Fang Q.F.. Spatial Variability of Micronutrients in Rice Grain and Paddy Soil. Pedosphere, 2009, 19(6): 748-755.

[24]

White P.J., Broadley M.R.. Biofortifying crops with essential mineral elements. Trends Plant Sci, 2005, 10: 586-593.

[25]

Wissuwa M., Ismail A.M., Graham R.D.. Rice grain zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization. Plant Soil, 2008, 306: 34-48.

[26]

Xie J.H., Xie M.Y., Nie S.P., Shen M.Y., Wang Y.X., Li C.. Isolation, chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus (Batal.) Iljinskaja. Food Chem, 2010, 119: 1626-1632.

[27]

Xie M.Y., Li L., Nie S.P., Wang X.R., Lee F.S.C.. Determination of speciation of elements related to blood sugar in bioactive extracts from Cyclocarya paliurus leaves by FIA-ICP-MS. Eur Food Res Technol, 2006, 223: 202-209.

[28]

Zhang J., Shen Q., Lu J.C., Li J.Y., Liu W.Y., Yang J.J., Li J., Xiao K.. Phenolic compounds from the leaves of Cyclocarya paliurus (Batal.) Ijinskaja and their inhibitory activity against PTP1B. Food Chem, 2010, 119: 1491-1496.

[29]

Zhao F.J., Su Y.H., Dunham S.J., Rakszegi M., Bedo Z., McGrath S.P., Shewry P.R.. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J Cereal Sci, 2009, 49: 290-295.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/