In vitro morphogenic response of leaf sheath of Phyllostachys bambusoides

Yurika H. Komatsu , Katherine Derlene Batagin-Piotto , Gilvano Ebling Brondani , Antônio Natal Gonçalves , Marcílio de Almeida

Journal of Forestry Research ›› 2011, Vol. 22 ›› Issue (2) : 209 -215.

PDF
Journal of Forestry Research ›› 2011, Vol. 22 ›› Issue (2) : 209 -215. DOI: 10.1007/s11676-011-0152-1
Original Paper

In vitro morphogenic response of leaf sheath of Phyllostachys bambusoides

Author information +
History +
PDF

Abstract

Nodal segments from secondary branches of saplings of Phyllostachys bambusoides were inoculated in MS medium to assess the in vitro morphogenic response of leaf sheath through the induction to callogenesis by Picloram (4-amino-3,5,6-trichloropicolinic acid) at different concentrations of carbohydrate under the same conditions with presence or absence of luminosity. In our experiment, secondary explants were kept in MS medium containing 8.0 mg·L−1 of Picloram for the callus formation. Calluses were transferred in MS medium supplemented with sucrose, fructose and glucose (control, 2%, 4% and 6%). Results show that Picloram induced the callogenesis in leaf sheath. The secondary embryogenesis was formed in yellow-globular callus. The sucrose as carbohydrate source in the absence of light was more efficient to induce rhizogenesis. Glucose was more efficiency in the presence of light. Callogenic induction and further embryogenesis evidenced the competence and determination of leaf sheath cells.

Keywords

poaceae / tissue culture / callus induction / cell competence / determination

Cite this article

Download citation ▾
Yurika H. Komatsu, Katherine Derlene Batagin-Piotto, Gilvano Ebling Brondani, Antônio Natal Gonçalves, Marcílio de Almeida. In vitro morphogenic response of leaf sheath of Phyllostachys bambusoides. Journal of Forestry Research, 2011, 22(2): 209-215 DOI:10.1007/s11676-011-0152-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agnihotri R.K., Nandi S.K.. In vitro shoot cut: a high frequency multiplication and rooting method in the Bamboo Dendrocalamus hamiltonii. Biotechnology, 2009, 8(2): 259-263.

[2]

Alexander M.P., Rao T.C.. In vitro culture of bamboo embryo. Current Science, 1968, 37 415.

[3]

Arya I.D., Satsanngi R., Arya S.. Rapid micropropagation of edible bamboo Dendrocalamus asper. Journal of Sustainable Forestry, 2002, 14(2/3): 103-114.

[4]

Cassells A.C.. The effect of 2,3,5-triiodobenzoic acid on caulogenesis in callus cultures of tomato and Pelargonium. Physiologia Plantarum, 1979, 46(2): 159-164.

[5]

Christianson M.L., Warnick D.A.. Organogenesis in vitro as a developmental process. HortScience, 1988, 23: 515-519.

[6]

Coruzzi G.M., Zhou L.. Carbon and nitrogen sensing and signaling in plants: emerging ‘matrix effects’. Current Opinion in Plant Biology, 2001, 4(3): 247-53.

[7]

Cuenca B., Ballester A., Vieitez A.M.. In vitro adventitious bud regeneration from internode segments of beech. Plant Cell, Tissue and Organ Culture, 2000, 60(3): 213-220.

[8]

Das M., Pal A.. In vitro regeneration of Bambusa balcooa Roxb.: factors affecting changes of morphogenetic competence in the axillary buds. Plant Cell, Tissue and Organ Culture, 2005, 81(1): 109-112.

[9]

Dettmer J., Elo A., Helariutta Y.. Hormone interactions during vascular development. Plant Molecular Biology, 2009, 69(4): 347-360.

[10]

Durzan D.J.. Somatic polyembryogenesis for the multiplication of tree crops. Biotechnology and Genetic Engineering Reviews, 1988, 6: 341-378.

[11]

Farrar F., Pollok C., Gallager J.. Sucrose and the integration of metabolism in vascular plant. Plant Science, 2000, 154(1): 1-11.

[12]

Ferreira C.M., Handro W.. Some morphogenetic response in leaf explants of Stevia rebaudiana cultured in vitro. Revista Brasileira de Botânica, 1987, 10: 113-116.

[13]

Ferreira C.M., Handro W.. Production, maintenance and plant regeneration from cell suspension cultures of Stevia rebaudiana (Bert.). Plant Cell Reports, 1988, 7(2): 123-126.

[14]

Gaspar T., Franck T., Bisbis B., Kevers C., Jouve L., Hauasman J.F., Dommes J.. Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regulation, 2002, 37(3): 263-285.

[15]

Gielis J., Peeters H., Gillis K., Oprins J., Debergh P.C.. Tissue culture strategies for genetic improvement of bamboo. Acta Horticulturae, 2001, 552: 195-203.

[16]

Godbole S., Sood A., Thakur R., Sharma M., Ahuja P.S.. Somatic embryogenesis and its conversion into plantlets in a multipurpose bamboo, Dendrocalamus hamiltonii Nees et Arn. Ex Munro. Current Science, 2002, 83(7): 885-889.

[17]

Goh D.K.S., Bon M.C., Aliotti F., Escoute J., Ferrière N., Monteuuis O.. In vitro somatic embryogenesis in two major rattan species: Calamus merrilli and Calamus subinermis. In Vitro Cellular & Developmental Biology — Plant, 2001, 37(3): 375-381.

[18]

Goh D.K.S., Michaux-Ferriérre O.M., Bon M.C.. Evidence of somatic embryogenesis from root tipo explants of the rattan Calamus manan. In Vitro Cellular & Developmental Biology — Plant, 1999, 35(5): 424-427.

[19]

Haccius B.. Question of unicellular origin of non-zygotic embryos in callus cultures. Phytomorphology, 1978, 28: 74-81.

[20]

Hassan A.A.E.L., Debergh P.. Embryogenesis and plantlet development in the bamboo Phyllostachys viridis (Young) McClure. Plant Cell, Tissue and Organ Culture, 1987, 10(1): 73-77.

[21]

Jiménez V.M., Castilho J., Tavares E., Guevara E., Montiel M.. In vitro propagation of the neotropical giant bamboo, Guadoa angustifolia Kunth, through axillary shoot proliferation. Plant Cell, Tissue and Organ Culture, 2006, 86(3): 389-395.

[22]

Jo E.A., Tewari R.K., Hahn E.J., Paek K.Y.. In vitro sucrose concentration affect growth and acclimatization of Alocasia amazonica plantlets. Plant Cell, Tissue and Organ Culture, 2009, 96(3): 307-315.

[23]

John C.K., Nadgauda R.S.. Nature watch: enigmatic bamboos. Resonance, 2001, 6(1): 54-65.

[24]

Kapoor P., Rao I.U.. In vitro rhizome induction and plantlet formation from multiple shoots in Bambusa bambos var. gigantea Bennet and Gaur by using growth regulators and sucrose. Plant Cell, Tissue and Organ Culture, 2006, 85(2): 211-217.

[25]

Koch K.. Sucrose metabolims: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology, 2004, 7(3): 235-246.

[26]

Lane W.D.. Regeneration of wolle plants from shoot meristem tips. Plant Science Letters, 1978, 13: 281-285.

[27]

Li X., Krasnyanski S.F., Korban S.S.. Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis in Rosa. Journal of Plant Physiology, 2002, 159(3): 313-319.

[28]

Lin C.C., Lin C.S., Chang W.C.. In vitro flowering of Bambusa edulis and subsequent plantlet survival. Plant Cell, Tissue and Organ Culture, 2003, 72(1): 71-78.

[29]

Lin C.S., Lin C.C., Chang W.C.. Effect of thidiazuron on vegetative tissuederived somatic embryogenesis and flowering of bamboo Bambusa edulis. Plant Cell, Tissue and Organ Culture, 2004, 76(1): 75-82.

[30]

MacArthur B.D., Ma’ayan A., Lemischka I.R.. Systems biology of stem cell fate and cellular reprogramming. Nature Reviews Molecular Cell Biology, 2009, 10(10): 672-681.

[31]

Mathur A., Mathur A.K., Gangwar A., Yadav S., Verma P., Sangwan R.S.. Anthocyanin production in a callus line of Panax sikkimensis Ban. In Vitro Cellular & Developmental Biology — Plant, 2009, 46(1): 13-21.

[32]

Meins F. Jr.. Habituation: heritable variation in the requirement of cultured plant cells for hormones. Annual Review of Genetics, 1989, 23: 395-408.

[33]

Mu J., Uehara T., Furuno T.. Effect of bamboo vinegar on regulation of germination and radicle growth of seed plants. Journal of Wood Science, 2003, 49(3): 262-270.

[34]

Mudoi K.D., Borthakur M.. In vitro micropropagation of Bambusa balcooa Roxb. through nodal explants from field-grown culms and scope for upscaling. Current Science, 2009, 96(7): 962-966.

[35]

Muralidharan E.M., Mascarenhas A.F.. In vitro plantlet formation by organogenesis in Eucalyptus camaldulensis and by somatic embryogenesis in Eucalyptus citriodora. Plant Cell Reports, 1987, 6(3): 256-259.

[36]

Murashige T., Skoog F.. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 1962, 15(3): 473-497.

[37]

Paiva Neto V.B., Otoni W.C.. Carbon sources and their osmotic potential in plant tissue culture: does it matter?. Sicientia Horticulturae, 2003, 97(3/4): 193-202.

[38]

Papp B., Plath K.. Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Research, 2011, 21(3): 486-501.

[39]

Ramanayake S.M.S.D., Meemaduma V.N., Weerawardene T.E.. In vitro shoot proliferation and enhancement of rooting for the large-scale propagation of yellow bamboo (Bambus vulgaris ’striata’). Scienta Hoticulturae, 2006, 110(1): 109-113.

[40]

Ramanayake S.M.S.D., Wanniarachchi W.A.V.R.. Organogenesis in callus derived from an adult giant bamboo (Dendrocalamus giganteus Wall. Ex Munro). Scienta Hoticulturae, 2003, 98(2): 195-200.

[41]

Ramanayake S.M.S.D., Wanniarachchi W.A.V.R., Tennakoon T.M.A.. Axillary shoot proliferation and in vitro flowering in an adult giant bamboo Dendrocalamus giganteus Wall. ex Munro. In Vitro Cellular & Developmental Biology — Plant, 2001, 37(5): 667-671.

[42]

Ramarosandratana A., Harvengt L., Bouvet A., Galvayrac R., Pâques M.. Effects of carbohydrate source, polyethylene glycol and gellan gum concentration on embryonal-suspensor mass (ESM) proliferation and maturation of maritime pine somatic embryos. In Vitro Cellular & Developmental Biology — Plant, 2001, 37(1): 29-34.

[43]

Romano A., Noronha C., Martins-Loução M.A.. Role of carbohydrates in micropropagation of cork oak. Plant Cell, Tissue and Organ Culture, 1995, 40(2): 159-167.

[44]

Rother C.D., Rodrigues R.R., Pizo M.A.. Effects of bamboo stands on seed rain and seed limitation in a rainforest. Forest Ecology and Management, 2009, 257(3): 885-892.

[45]

Rout G.R., Das P.. In vitro plant regeneration via callogenesis and organogenesis in Bambusa vulgaris. Biologia Plantarum, 1997, 39(4): 515-522.

[46]

Rugini E., Bazzoffia A., Jacobini A.. A simple in vitro method to avoid the initial dark period and to increase rooting in fruit trees. Acta Horticulturae, 1988, 227: 438-440.

[47]

Saéns L., Azpeitia A., Chuc-Armendariz B., Chand J.L., Verdeil J.L., Hocher V., Oropeza C.. Morphological and histological changes during somatic embryo formation from coconut plumule explants. In Vitro Cellular & Developmental Biology — Plant, 2006, 42(1): 19-25.

[48]

Sass J.E.. Botanical microtechnique. 1951, Iowa: State Press, 228.

[49]

Şener O., Can E., Arslan M., Çeliktaş N.. Effects of genotype and picloram concentrations on callus induction and plant regeneration from immature inflorescence of spring barley cultivars (Hordeum vulgare L.). Biotechnology & Biotechnological Equipment, 2008, 22(4): 915-920.

[50]

Smet I., Voß U., Jürgens G., Beeckman T.. Receptor-like kinases shape the plant. Nature Cell Biology, 2009, 11(10): 1166-1173.

[51]

Smet I., Beeckman T.. Asymmetric cell division in land plants and algae: the driving force for differentiation. Nature Reviews Molecular Cell Biology, 2011, 12(3): 177-188.

[52]

Sombroek W., Ruivo M.D.L., Fearnside P.M., Glaser B., Lehmann J.. Lehmann J., Kern D.C., Glaser B., Woods W.I.. Amazonian dark earths as carbon stores and sinks. Amazonian dark earths: origin, properties management. 2004, Netherlands: Kluwer Academic Publishers, 125 139

[53]

Suzaki T., Nakatsubo T.. Impact of the bamboo Phyllostachys bambusoides on the light environment and plant communities on riverbanks. Journal of Forest Research, 2001, 6(2): 81-86.

[54]

Toonen M.A.J., Vries S.C.. Wang T.L., Cuming A.. Initiation of somatic embryos from single cells. Embryogenesis: the generation of a plant. 1996, Oxford: Bios Scientific Publishers, 173 189

[55]

Vu J.C.V., Niedz R.P., Yelenovsky G.. Glycerol stimulation of chlorophyll synthesis, embryogenesis, and carboxylation and sucrose metabolism enzymes in nucellar callus of ‘Hamlin’ sweet orange. Plant Cell, Tissue and Organ Culture, 1993, 33(1): 75-80.

[56]

Yoshihiro O., Komamine A.. Induction of anthocyanin synthesis in relation to embryogenesis in a carrot suspension culture: correlation of metabolic differentiation with morphological differentiation. Physiologia Plantarum, 1981, 53(4): 570-577.

[57]

Zhao-Hua L., Ben-Yuan Z., Zhao-Quan Z.. Species and distribution of mountain bamboos in Shennongjia, Central China. Journal of Forestry Research, 2003, 14(1): 35-38.

[58]

Zimmerman R.H.. Rooting apple cultivars in vitro: interactions among light, temperature, phloroglucinol and auxin. Plant Cell, Tissue and Organ Culture, 1984, 3(4): 301-311.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/