Identification of SSR loci in Betula luminifera using birch EST data

Yong-quan Lu , Hai-ying Li , Qing Jia , Hua-hong Huang , Zai-kang Tong

Journal of Forestry Research ›› 2011, Vol. 22 ›› Issue (2) : 201 -204.

PDF
Journal of Forestry Research ›› 2011, Vol. 22 ›› Issue (2) : 201 -204. DOI: 10.1007/s11676-011-0150-3
Original Paper

Identification of SSR loci in Betula luminifera using birch EST data

Author information +
History +
PDF

Abstract

Expressed sequence tags (ESTs) are generated from single-pass sequencing of randomly picked cDNA clones and can be used for development of simple sequence repeat (SSR) markers or microsatellites. However, EST databases have been developed for only a small number of species. This paper provides a case study of the utility of freely available birch EST resources for the development of markers necessary for the genetic analysis of Betula luminifera. Based on birch EST data, primers for 80 EST-SSR candidate loci were developed and tested in birch. Of these, 59 EST-SSR loci yielded single, stable and clear PCR products. We then tested the utility of those 59 markers in B. luminifera. The results showed 28 (47.6%) yielded stable and clear PCR products for at least one B. luminifera genotype. In addition, this study describes a rapid and inexpensive alternative for the development of SSRs in species with scarce available sequence data.

Keywords

exploit / Betula luminifera / birch / EST database / EST-SSR

Cite this article

Download citation ▾
Yong-quan Lu, Hai-ying Li, Qing Jia, Hua-hong Huang, Zai-kang Tong. Identification of SSR loci in Betula luminifera using birch EST data. Journal of Forestry Research, 2011, 22(2): 201-204 DOI:10.1007/s11676-011-0150-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams M.D., Kelley J.M., Gocayne J.D., Dubnick M., Polymeropoulos M.H., Xiao H., Merril C.R., Wu A., Olde B., Moreno R.F., Kerlavage A.R., McCombie W.R., Venter J.C.. Complementary DNA sequencing: expressed sequence tag and human genome project. Science, 1991, 252: 1651-1656.

[2]

Becker J., Heun M.. Barley microsatellites: allele variation and mapping. Plant Mol Biol, 1995, 27: 835-845.

[3]

Botstein D., White R.L., Skolnick M., Davis R.W.. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314-331.

[4]

Brady SM, Provart NJ. 2009. Web-queryable large-scale data sets for hyposis generation in plant biology. American society of plant Biologist, in web http://www.aspb.org.

[5]

Don R.H., Cox P.T., Wainwright B.J., Baker K., Mattick J.S.. “Touchdown” PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res, 1991, 19 4008

[6]

Fowler S., Thomashow M.F.. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002, 14: 1675-1690.

[7]

Gupta P.K., Balyan I.S., Sharma P.C., Ramesh B.. Microsatellites in plants: a new class of molecular markers. Curr Sci, 1996, 70: 45-54.

[8]

Li Y.C., Korol A.B., Fahima T., Beiles A., Nevo E.. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol, 2002, 11: 2453-2465.

[9]

Lu Y., Wang X., Huang W., Xiao T., Zheng Y., Wu Weiren.. Development of amplified consensus genetic markers in Gramineae based on rice intron length polymorphisms. Scientia Agricultura Sinica, 2006, 39: 433-439.

[10]

Lu Y., Ye Z., Wu W.. Analysis of the phylogenetic relationships among several species of gramineae using ACGM markers. Acta Genetica Sinica, 2006, 33: 1127-1131.

[11]

Murray M.G., Thompson W.F.. Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4325.

[12]

Pashley C.H., Ellis J.R., Mccauley D.E., Burke J.M.. EST Database as a source for molecular markers: lessons from Helianthus. Journal of heredity, 2006, 97: 381-388.

[13]

Rong J., Bowers J.E., Schulze S.R., Waghmare V.N., Rogers C.J., Pierce G.J., Zhang H., Estill J.C., Paterson A.H.. Comparative genomics of Gossypium and Arabidopsis: unraveling the consequences of both ancient and recent polypolidy. Genome research, 2005, 15: 1198-1210.

[14]

Schuler G.D.. Sequence mapping by electronic PCR. Genome Res, 1997, 7: 541-550.

[15]

Toth G., Gaspari Z., Jurka J.. Microsatellites in different eukaryotic genomes: survey an analysis. Genome Res, 2000, 10: 967-981.

[16]

Vos P., Hogers R., Bleeker M., Reijans M., Van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M.. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 23: 4407-4414.

[17]

Wang X., Zhao X., Zhu J., Wu W.. Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.). DNA Research, 2005, 12: 417-427.

[18]

Wei H., Dhanaraj A.L., Rowland L.J., FU Y., Krebs S.L., Arora R.. Comparative analysis of expressed sequence tags from cold acclimated and non-acclimated leaves of Rhododendron catawbiense Michx. Planta, 2005, 221: 406-416.

[19]

Williams J.G., Kubelik A.R., Livak K.J., Rafalski J.A., Tingey S.V.. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res, 1990, 18: 6531-6535.

[20]

Yang L., Jin G., Zhao X., Zheng Y., Xu Z., Wu W.. PIP: a database of potential intron polymorphism markers. Bioinformatics, 2007, 23: 2174-2177.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/