Allometric prediction of above-ground biomass of eleven woody tree species in the Sudanian savanna-woodland of West Africa
Louis Sawadogo , Patrice Savadogo , Daniel Tiveau , Sidzabda Djibril Dayamba , Didier Zida , Yves Nouvellet , Per Christer Oden , Sita Guinko
Journal of Forestry Research ›› 2010, Vol. 21 ›› Issue (4) : 475 -481.
Allometric prediction of above-ground biomass of eleven woody tree species in the Sudanian savanna-woodland of West Africa
Allometric models are necessary for estimating biomass in terrestrial ecosystems. Generalized allometric relationship exists for many tropical trees, but species- and region-specific models are often lacking. We developed species-specific allometric models to predict aboveground biomass for 11 native tree species of the Sudanian savanna-woodlands. Diameters at the base and at breast height, with species means ranging respectively from 11 to 28 cm and 9 to 19 cm, and the height of the trees were used as predictor variables. Sampled trees spanned a wide range of sizes including the largest sizes these species can reach. As a response variable, the biomass of the trees was obtained through destructive sampling of 4 754 trees during wood harvesting. We used a stepwise multiple regression analysis with backward elimination procedure to develop models separately predicting, total biomass of the trees, stem biomass, and biomass of branches and twigs. All species-specific regression models relating biomass with measured tree dimensions were highly significant (p < 0.001). The biomass of branches and twigs was less predictable compared to stem biomass and total biomass, although their models required fewer predictors and predictor interactions. The best-fit equations for total above-ground biomass and stem biomass had R 2 > 0.70, except for the Acacia species; for branches including twig biomass, R2-values varied from 0.749 for Anogeissus leiocarpa to 0.183 for Acacia macrostachya. The use of these equations in estimating available biomass will avoid destructive sampling, and aid in planning for sustainable use of these species.
allometry / above-ground biomass / indigenous woody species / linear regression / site specific equation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
R Development Core Team. R: A language and environment for statistical computing. 2009, Vienna, Austria: R Foundation for Statistical Computing |
| [24] |
|
| [25] |
Smektala G, Hautdidier B, Gautier D, Peltier R, Njiemoun A. 2002. Construction de tarifs de biomasse pour l’évaluation de la disponibilité ligneuse en zone de savanes au Nord-Cameroun. Actes du colloque, 27–31 |
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
/
| 〈 |
|
〉 |