Genetic diversity and differentiation of the Dybowski’s frog (Rana dybowskii) in Northeast China

Ming Zhang , Xue-yuan Jia , Yi-dan Ma , Jian-zhang Ma

Journal of Forestry Research ›› 2010, Vol. 21 ›› Issue (2) : 239 -245.

PDF
Journal of Forestry Research ›› 2010, Vol. 21 ›› Issue (2) : 239 -245. DOI: 10.1007/s11676-010-0039-6
Research Paper

Genetic diversity and differentiation of the Dybowski’s frog (Rana dybowskii) in Northeast China

Author information +
History +
PDF

Abstract

The genetic diversity and population structure of the Dybowski’s frog (Rana dybowskii) were investigated by using 11 polymorphic microsatellite loci. Total 75 individuals were sampled from six populations in Lesser Khingan Mountains and Changbai Mountains, China. Results showed that allele number of the 11 microsatellite loci was in the range of 2–10 in all populations, with the mean of 5.6. The average expected heterozygosity (H E) was 0.572, indicating a moderate polymorphism. The results of genetic differentiation coefficient (F ST) showed that population genetic differentiation was significant between Changbai and Lesser Khingan Mountains (p<0.001). This result was verified further by Nei’s genetic distance (D A) based on UPGMA phylogenetic trees and by AMOVA analysis. In conclusion, the populations distributed in Lesser Khingan Mountains and Changbai Mountain are proposed to be two distinct management units (MUs) for their protection and management.

Keywords

Dybowski’s frog (Rana dybowskii) / genetic diversity / genetic differentiation / management units (MUs) / microsatellite

Cite this article

Download citation ▾
Ming Zhang, Xue-yuan Jia, Yi-dan Ma, Jian-zhang Ma. Genetic diversity and differentiation of the Dybowski’s frog (Rana dybowskii) in Northeast China. Journal of Forestry Research, 2010, 21(2): 239-245 DOI:10.1007/s11676-010-0039-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbott C.L., Double M.C.. Genetic structure, consevation genetics and evidence of speciation by range expansion in shy and white-capped alba-trosses. Mol Ecol, 2003, 12: 2953-2962.

[2]

Ardren W.R., Borer S., Thrower F., Joyce J.E., Kapuscinski A.R.. Inheritance of 12 microsatellite loci in Oncorhynchusmykiss. Journal of Heredity, 1999, 90: 529-536.

[3]

Arens P., Sluis T., Westende W., Vosman B., Vos C.C., Smulders M.J.M.. Genetic population differentiation and connectivity among fragmented Moor frog (Rana arvalis) populations in The Netherlands. Land-scape Ecol, 2007, 22: 1489-1500.

[4]

Boring A.M.. Chinese amphibians. Inst. Geobiologie Peking, 1945, 13: 96-100.

[5]

Elphinstone M.S., Hinten G.N., Anderson M.J.. An inexpensive and high-throughput procedure to extract and purify total genomic DNA for population studies. Mol Ecol Notes, 2003, 3: 317-320.

[6]

Excoffier L., Laval G., Schneider S.. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online, 2005, 1: 47-50.

[7]

FicetolaI G.F., Garner T.W.J., Bernardi F.D.. Genetic diversity, but not hatching success, is jointly affected by postglacial colonization and isolation in the threatened frog, Rana latastei. Mol Ecol, 2007, 16: 1787-1797.

[8]

Funk W.C., Blouin M.S., Corn P.S., Maxell B.A., Pilliod D.S., Amish S., Allendorf F.W.. Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol, 2005, 14: 483-496.

[9]

Gou S.W., Thompson E.A.. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 1992, 48: 361-372.

[10]

Goudet J, 2001: FSTAT, version 2.9.3, A program to estimate and test gene diversities and fixation indices. http://www2.unil.ch/popgen/softwares/fstat.htm.

[11]

Hoffman E.A., Ardren W.R., Blouin M.S.. Nine polymorphic microsatellite loci for the northern leopard frog (Rana pipiens). Mol Ecol Notes, 2003, 3: 115-116.

[12]

Holst-Jensen A., Rønning S.B., Løvseth A., Berdal K.G.. PCR technology for screening and quantification of genetically modified organisms (GMOs). Analytical and Bioanalytical Chemistry, 2003, 375: 985-993.

[13]

Jiang J., Zhou K.. Phylogenetic relation of Chinese Brown Frogs inferred from mitochondrial DNA sequence of 12SrRNA gene. Zool Res, 2001, 1: 27-32.

[14]

Jiang J., Xie F., Zheng Z.. Phylogenetic relationships of Chinese Brown Frogs with discussion on the karyotype evolution. Journal of Si-chuan University (Natural Science Edition), 2002, 39: 85-89.

[15]

Julian S.E., King T.L.. Novel tetranucleotide microsatellite DNA markers for the wood frog, Rana sylvatica. Mol Ecol Notes, 2003, 3: 256-258.

[16]

Knopp T., Cano J.M., Pierre-André, Merilä C.J.. Contrasting levels of variation in neutral and quantitative genetic loci on island populations of Moor Frogs (Rana arvalis). Conserv Genet, 2007, 8: 45-56.

[17]

Li Y., Zhang J., Li M., Liu C., Jiang D., Deng M.. Study on the origin for oviduetus Ranae. China Journal of Chinese Materia Medica, 2003, 28: 16-17.

[18]

Li Z., Yang B., Bai X.. Genetic diversity of from Changbaishan based on RAMP markers. Journal of Economic Animal, 2009, 13: 87-94.

[19]

Luo X., Li J.. Comparative studies on karyotypes of Rana temporaria chensinensis from Harbin, Lanzhou and Hongyuan. Acta Herpetologica Sinica, 1985, 4: 5-12.

[20]

Matsuba C., Merilä J.. Isolation and characterization of 145 polymorphic microsatellite loci for the common frog (Rana temporaria). Mol Ecol Resour, 2009, 9: 555-562.

[21]

Monsen K.J., Blouin M.S.. Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial disconcordance. Mol Ecol, 2003, 12: 3275-3286.

[22]

Moritz C.. Defining evolutionarily significant units for conservation. Trends Ecol Evol, 1994, 9: 373-375.

[23]

Nei M., Tajima F., Tateno Y.. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol, 1983, 19: 153-170.

[24]

Newman R.A., Squire T.. Microsatellite variation and fine-scale population structure in the wood frog (Rana sylvatica). Mol Ecol, 2001, 10: 1087-1100.

[25]

Orlova E.M., Bakjarev V.A., Borkin L.J.. Karyotypes of some brown frogs of Eurasia and a taxonmic analysis of karyotypes of the group. Proc Zool Inst, 1977, 74: 81-103.

[26]

Paetkau D., Strobeck C.. The molecular basis and evolutionary history of a microsatellite null allele in bears. Mol Ecol, 1995, 4: 519-520.

[27]

Pope C.H.. Notes on amphibians from Fukien, Hainan and other of China. Bull Amer Mus Nat Hist, 1931, 61: 78-85.

[28]

Rousset F., Raymond M.. Testing heterozygote excess and deficiency. Genetics, 1995, 140: 1413-1419.

[29]

Savage A.E., Jaeger J.R.. Isolation and characterization of microsatellite markers in the lowland leopard frog (Rana yavapaiensis) and the relict leopard frog (R. onca), two declining frogs of the North American desert southwest. Mol Ecol Resour, 2009, 9: 199-202.

[30]

Shao Y., Guo R., Xia Q., Wu Q.. Study on chromosome karyotype and Ag-band of Rana chensinensis David from Liaoning Province. Journal of Fudan University (Natural Sciences), 1999, 38: 557-560.

[31]

Sota T., Sasabe M.. Utility of nuclear alleIe networks for the analysis of closely related species in the genus carabus, subgenus ohomopterus. Syst Biol, 2006, 55: 329-344.

[32]

Stejneger L.. Chinese amphibians and reptiles. Proceedings of the Na-tional Museum, 1925, 66: 19-23.

[33]

Tian X., Feng Y., Liu Y.. Preliminary study on respiration metabolism of Rana Chensinensis during hibernation. Journal of Xiangfan University, 2001, 22: 79-82.

[34]

Wang J., Li P., Lu Y., Dong B., Zhou Z., Yu F.. Description and comparison of tadpoles of R. huanrenensis and R. dybowskii. Sichuan Journal of Zoology, 2006, 25: 349-353.

[35]

Wei G., Chen F., Xu N., Li D.. Study on chromosome karyotype and C-banding of Rana chensinensis kangdingensis and Rana chensinensis changbaishanensis. Sichuan Journal of Zoology, 1991, 10: 9-11.

[36]

Wei G., Chen F., Xu N., Li D.. New Subspecies of Rana Chensiensis from China. Acta Zool Sin, 1991, 16: 375-382.

[37]

Weir B.S., Cockerham C.C.E.. Estimating F-statistics for the analysis of population structure. Evolution, 1984, 38: 1358-1370.

[38]

Wright S.. The interpretation of population structure by Fstatistics with special regard to systems of mating. Evolution, 1965, 19: 395-420.

[39]

Wu H., Hu J., Wan Q., Fang S., Liu W., Zhang S.. Microsatellite polymorphisms and population genetic structure of sika deer in China. Acta Theriologica Sinica, 2008, 28: 109-116.

[40]

Xiao X., Zheng D., Li F., Liu X.. Population genetic diversity and regional differentiation of Chinese forest frogs (Rana chensinensis) in Heilongjiang Province. Journal of Forestry Research, 2001, 11: 40-42.

[41]

Xie F., Ye C., Fei L., Jiang J., Zeng X.. Taxonomical studies on brown frogs (Rana) from Northeastern China (Amphibian: Ranidae). Acta Zool Sin, 1999, 2: 224-231.

[42]

Xing Xiumei. 2006. Studies on molecular genetic diversity of deer or strains in China. Ph.D Dissertation, Chinese Academy of Agricultural Sciences.

[43]

Yang X., Wang Y., Zhou K., Liu Z.. Phylogenetic relationships of Chinese Brown Frogs (Rana) based on sequence of mitochondrial cytochrome b gene. Zool Res, 2001, 5: 345-350.

[44]

Yu L., Kong X., Li W.. Breeding ecology of Chinese Brown Frog (Rana chensinensis). Journal of Liaoning Forestry Science and Technology, 2000, 2: 32-34.

[45]

Zhan A., Li C., Fu J.. Big mountains but small barriers: Population genetic structure of the Chinese wood frog (Rana chensinensis) in the Tsinling and Daba Mountain region of northern China. BMC Genetics, 2009, 10: 1-10.

[46]

Zhang Z., Li D., Zhao W.. The resting metabolic rate of the aerial respiration of Rana dybowskii and Rana amurensis. Chinese Journal of Wildlife, 2008, 29: 244-247.

[47]

Zhao Z.. Studies on ecology of the Rana temporaria chensinensis. Journal of Northeast Normal University, 1982, 3: 89-96.

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/