Plasmolysis treatment enhances the expression of callose synthase gene in zygotic embryos of Eleutherococcus senticosus

Hu Xilin , Yan An , De-an Xia , Xiang-ling You

Journal of Forestry Research ›› 2010, Vol. 21 ›› Issue (2) : 189 -192.

PDF
Journal of Forestry Research ›› 2010, Vol. 21 ›› Issue (2) : 189 -192. DOI: 10.1007/s11676-010-0030-2
Article

Plasmolysis treatment enhances the expression of callose synthase gene in zygotic embryos of Eleutherococcus senticosus

Author information +
History +
PDF

Abstract

In previous study we reported that pretreatment with plasmolysis enhanced somatic embryo formation in hypocotyls of Eleutherococcus senticosus. In the present study, the expression level of callose synthase gene in embryos of E. senticosus in response to 2,4-D, sucrose and mannitol treatments was analyzed by RT-PCR. The results show that plasmolysis pretreatment using sucrose and mannitol significantly promoted the expression of callose synthase gene. Also, the thicker cell walls of explant plasmolyzed compared with controls were observed during the somatic embryogenesis. We suggest that the callose may make the cells in epidermis separate from neighboring cells and then develop into embryogenic potential cells.

Keywords

Eleutherococcus senticosus / Somatic embryo / Plasmolysis / Callose synthase gene / RT-PCR

Cite this article

Download citation ▾
Hu Xilin, Yan An, De-an Xia, Xiang-ling You. Plasmolysis treatment enhances the expression of callose synthase gene in zygotic embryos of Eleutherococcus senticosus. Journal of Forestry Research, 2010, 21(2): 189-192 DOI:10.1007/s11676-010-0030-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bonga J.M., Durzan D.J.. Tissue culture in forestry. 1982, The Hague: Martinus Nijhoff/DR W. Junk publishers

[2]

Choi Y.E., Soh W.Y.. Enhance somatic single embryo formation by plasmolyzing pretreatment from cultured ginseng cotyledons. Plant Sci, 1997, 135: 197-206.

[3]

Choi Y.E., Yang D.C., Yoon E.S., Choi K.T.. High-efficiency plant production via direct somatic single embryogenesis from preplasmolysed cotyledons of Panax ginseng and possible dormancy of somatic embryos. Plant Cell Rep, 1999, 18: 493-499.

[4]

Dubois T., Guedira M., Dubois J., Vasseur J.. Direct somatic embryogenesis in roots of Cichorium: Is callose an early marker?. Ann Bot, 1990, 65: 539-545.

[5]

Grimault V., Helleboid S., Vasseur J., Hilbert J.L.. Co-localization of β-1,3-glucanases and callose during somatic embryogenesis in Cichorium. Plant Signal Behav, 2007, 2: 455-461.

[6]

Gui Y., Guo Z., Ke S., Skirvin R.M.. Somatic embryogenesis and plant regeneration in Acanthopanax senticosus. Plant Cell Rep, 1991, 9: 514-516.

[7]

Han J.Y., Choi Y.E.. Mass production of Eleutherococcus seticosus plants through In vitro cell culture. Korean J Plant Biotech, 2003, 30: 167-172.

[8]

Hartmann H.T., Kester D.E., Davies F.T.. Plant propagation: principles and practices. 1990, New Jersey: Prentice Hall Career & Technology Englewood Cliffs

[9]

Ikeda-Iwai M., Umehara M., Shinobu S., Kamada H.. Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J, 2003, 34: 107-114.

[10]

Kamada H., Ishikawa K., Saga H., Harada H.. Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tiss Cult Lett, 1993, 10: 38-44.

[11]

Kamada H., Kobayashi K., Kiyosue T., Harada H.. Stress induced somatic embryogenesis in carrot and its application to synthetic seed production. In Vitro Cell Dev Biol, 1989, 25: 1163-1166.

[12]

Karami O, Saidi A. 2009. The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep DOI,10.1007/s11033-009-9764-3.

[13]

Kisyosue T., Takano K., Kamada H., Harada H.. Induction of somatic embryogenesis in carrot by heavy metal ions. Can J Bot, 1990, 68: 2301-2303.

[14]

Murashige T., Skoog F.. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant, 1962, 15: 473-497.

[15]

Ohana P., Benziman M., Delmer D.P.. Stimulation of callose synthesis in Vivo correlates with changes in intracellular distribution of the callose synthase activator -furfuryl-β-glucoside. Plant Physiol, 1993, 101: 187-191.

[16]

Pasternak T., Prinsen E., Ayaydin F., Miskolezi P., Potters G., Asard H., Van Onekelen H., Dudits D., Fehér A.. The role of auxin, pH and stress in the activation of embryogenic cell division in leaf protoplastderived cells of alfalfa (Medicago sativa L.). Plant Physiol, 2002, 129: 1807-1819.

[17]

Smith D.L., Krikorian A.D.. Release of somatic embryogenic potential from excised zygotic embryos of carrot and maintenance of proembryonic cultures in hormone-free medium. Am J Bot, 1989, 76: 1832-1843.

[18]

Verma D.P.S., Hong Z.. Plant callose synthase complexes. Plant Mol Biol, 2001, 47: 693-701.

[19]

Wu F.S., Cahoon A.B.. Plasmolysis facilitates the accumulation of protein and DNA into extra-plasmalemma space of intact plants cells. Plant Sci, 1995, 104: 201-214.

[20]

You X.L., Yi J.S., Choi Y.E.. Cellular change and callose accumulation in zygotic embryos of Eleutherococcus senticosus caused by plasmolyzing pretreatment result in high frequency of single-cell-derived somatic embryogenesis. Protoplasma, 2006, 227: 105-112.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/