Structural characterization of coconut tree leaf sheath fiber reinforcement

K. Obi Reddy , G. Sivamohan Reddy , C. Uma Maheswari , A. Varada Rajulu , K. Madhusudhana Rao

Journal of Forestry Research ›› 2010, Vol. 21 ›› Issue (1) : 53 -58.

PDF
Journal of Forestry Research ›› 2010, Vol. 21 ›› Issue (1) : 53 -58. DOI: 10.1007/s11676-010-0008-0
Research Paper

Structural characterization of coconut tree leaf sheath fiber reinforcement

Author information +
History +
PDF

Abstract

The coconut palm tree leaf sheath fibers were analyzed by FTIR spectral analysis, Chemical, X-ray and thermo gravimetric methods to assess their suitability as reinforcements in the preparation of green composites. The morphology of the untreated and alkali treated fibers was studied by scanning electron microscopic method. The FTIR and chemical analyses indicated lowering of hemi-cellulose content by alkali treatment of the fibers. The X-ray diffraction revealed an increase in crystallinity of the fibers on alkali treatment. The thermal stability of the fibers was found to increase slightly by alkali treatment. The tensile properties of these fibers increased on alkali treatment. The mechanical and other physical properties indicated that these fibers were suitable as reinforcements for making the green composites.

Keywords

coconut leaf sheath fibers / chemical analysis / crystallinity / mechanical properties / scanning electron microscopy

Cite this article

Download citation ▾
K. Obi Reddy, G. Sivamohan Reddy, C. Uma Maheswari, A. Varada Rajulu, K. Madhusudhana Rao. Structural characterization of coconut tree leaf sheath fiber reinforcement. Journal of Forestry Research, 2010, 21(1): 53-58 DOI:10.1007/s11676-010-0008-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bledzki A.K., Reihmane S., Gassan J.. Properties and modification methods for vegetable fibers for natural fiber composites. Journal of Applied Polymer Science, 1996, 59: 1329-1336.

[2]

Chattopadhyay H., Sarkar P.B.. A New Method for the Estimation of Cellulose. Proceedings of the National Institute of Sciences of India, 1946, 12: 23-46.

[3]

Doyle C.D.. Mark H. F., Bikales N. M., Overberger C.G., Menges G., Kroschwitz J. I.. Thermogravimetric Analysis. Encyclopedia of Polymer Science and Engineering. 1985, New York: Wiley Interscience Publishers, 1 41

[4]

Jagadeesh D., Rajulu A.V., Guduri B.R.. Tensile properties of polycarbonate-coated natural fabric Hildegardia populifolia. Journal of Reinforced Plastics and composites, 2008, 27: 1833-1838.

[5]

Jayaramudu J., Guduri B.R., Rajulu A.V.. Characterization of natural fabric streculia urens. International Journal of Polymer Analysis and Characterization, 2009, 14: 115-125.

[6]

Jayaramudu J., Reddy D.J.P., Guduri B.R., Rajulu A.V.. Properties of natural fabric polyalthia cerasoides. Fibers and Polymers, 2009, 10: 338-342.

[7]

Li X.H., Meng Y.Z., Wang S.J., Varada Rajulu A., Tjong S.C.. Completely biodegradable composites of Poly (propylene carbonate) and short, lignocellulose fiber Hildegardia Populifolia. Journal Polymer Science Part B: Polymer Physics, 2004, 42: 666-675.

[8]

Maheswari C.U., Guduri B.R., Varada Rajulu A.. Properties of lignocellulose tamarind fruit fibers. Journal of Applied Polymer Science, 2008, 110: 1986-1989.

[9]

Mohanty S., Nayak S.K.. Mechanical and rheological characterization of treated Jute-HD composites with a different morphology. Journal of Reinforced Plastics and Composites, 2006, 25: 1419-1439.

[10]

Mohanty A.K., Misra M., Hinrichsen G.. Biofibres, biodegradable polymers and biocomposites: an overview. Macromolecular Materials and Engineering, 2000, 276/277: 1-24.

[11]

Moran J.I., Alvarez V.A., Cyras V.P., Vazquez A.. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, 2008, 15: 149-159.

[12]

Mwaikambo L.Y., Ansell M.P.. Chemical modification of hemp, sisal, and kapok fibers by alkalization. Journal Applied Polymer Science, 2002, 84: 2222-2234.

[13]

Obi Reddy K., Guduri B.R., Rajulu A.V.. Structural characterization and tensile properties of borassus fruit fibers. Journal of Applied polymer science, 2009, 114: 603-611.

[14]

Ouajaj S., Hodzic A., Shanks R.A.. Morphological and grafting modification of natural cellulose fibers. Journal Applied Polymer Science, 2004, 94: 2456-2465.

[15]

Pandey K.K.. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal Applied Polymer Science, 1999, 71: 1969-1975.

[16]

Rajulu A.V., Babu Rao G., Ravi Prasad Rao B., Madhusudana Reddy A., He J., Zhang J.. Properties of ligno-cellulose fiber hildegardia. Journal of Applied Polymer Science, 2002, 84: 2216-2221.

[17]

Rajulu A.V., Nadhan A.V., Rama Devi R.. Properties of ligno-cellulosic bilayered vegetable fabric from ridge gourd. Journal of Applied Polymer Science, 2006, 102: 2338-2342.

[18]

Rajulu A.V., Rama Devi R.. Tensile properties of ridge gourd/phenolic composites and glass/ridge gourd/phenolic hybrid composites. Journal of Reinforced Plastics and composites, 2007, 26: 629-638.

[19]

Rout J., Tripathy S.S., Nayak S.K., Misra M., Mohanty A.K.. Scanning electon microscopy study of chemically modified coir fibers. Journal Applied Polymer Science, 2001, 79: 1169-1177.

[20]

Sarkar P.B., Mazumdar A.K., Pal K.B.. The hemicelluloses of jute fibre. Journal of the Textile Institute, 1948, 39(T44): 44-58.

[21]

Satyanarayana K.G., Pillai C.K.S., Sukumaran K., Pillai S.G.K., Rohatgi P.K., Vijayan K.. Structure property studies of fibres from various parts of the coconut tree. Journal of Materials Science, 1982, 17: 2453-2462.

[22]

Sydenstricker T.H.D., Mochnaz S., Amico S.C.. Pull-out and other evaluations in sisal-reinforced polyester biocomposites. Polymer Testing, 2003, 22: 375-380.

[23]

Taha I., Ziegmann G.. A comparison of mechanical properties of natural fiber filled biodegradable and polyolefin polymers. Journal Composite Materials, 2006, 40: 1933-1946.

[24]

Teramoto N., Urata K., Ozawa K., Shibata M.. Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polymer Degradation and Stability, 2004, 86: 401-409.

AI Summary AI Mindmap
PDF

331

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/