Soil seed bank assembly following secondary succession on abandoned agricultural fields in Nicaragua

Benigno González-Rivas , Mulualem Tigabu , Guillermo Castro-Marín , Per Christer Odén

Journal of Forestry Research ›› 2009, Vol. 20 ›› Issue (4) : 349 -354.

PDF
Journal of Forestry Research ›› 2009, Vol. 20 ›› Issue (4) : 349 -354. DOI: 10.1007/s11676-009-0059-2
Research Paper

Soil seed bank assembly following secondary succession on abandoned agricultural fields in Nicaragua

Author information +
History +
PDF

Abstract

The composition and density of seeds in soils of secondary forests derived on abandoned fields after 4, 9 and 14 years of abandonment were quantified to examine whether the soil seed bank assembles during secondary succession as the plant communities assemble. A total of 18, 37 and 48 soil samples from 4-, 9- and 14-year old sites, respectively were collected in 15 cm × 15 cm plots up to 9 cm depth. A total of 3, 5 and 9 species were found on sites abandoned 4, 9 and 14 years ago, respectively. Among different life forms, trees were highly represented in the soil seed bank of 9-year (60%) and 14-year (33%) old sites compared to 4-year old site entirely dominated by nonwoody flora. The total number of seeds ranged from 327 in the 4-year old site to 146 in the 14-year old site, and the corresponding density of viable seeds ranged from 141 seeds ·m−2 in the 4-year old site to 26 seeds m−2 in the 14-year old site with a consistent decreasing pattern in the chronosequence. The similarity between the soil seed flora and the standing woody vegetation was low for both 9- and 14-year old sites while complete dissimilarity was found for 4-year old site. We concluded that the species composition of soil seed banks assemble gradually during secondary succession, but the overall seed density is still low for natural regeneration of trees to rely on. To expedite the recovery of secondary forests on such abandoned fields, the seed bank needs to be supplemented by direct seeding, enrichment planting of desired species and installing artificial perches for facilitating seed dispersal.

Keywords

seed dispersal / dry forest / seed bank / secondary succession / restoration / Nicaragua

Cite this article

Download citation ▾
Benigno González-Rivas, Mulualem Tigabu, Guillermo Castro-Marín, Per Christer Odén. Soil seed bank assembly following secondary succession on abandoned agricultural fields in Nicaragua. Journal of Forestry Research, 2009, 20(4): 349-354 DOI:10.1007/s11676-009-0059-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aide T.M., Cavalier J.. Barriers to tropical lowland forest restoration in the Sierra Nevada de Santa Marta, Colombia. Restoration Ecology, 1994, 2: 219-229.

[2]

Anonymous. 1994. Plan General de Manejo de la Cooperativa Bernardino Díaz Ochoa. Proyecto Sur Oeste. Nandaime, Nicaragua.

[3]

Baskin C.C., Baskin J.M.. Seeds, Ecology, Biogeography, and Evolution of Dormancy and Germination. 1998, San Diego: Academic Press

[4]

Beatrijs B., Martin H.. Seed bank assembly follows vegetation succession in dune slacks. Journal of Vegetation Science, 2004, 15: 449-456.

[5]

Bojorquez PC. 1993. Evaluación preliminar de germinación de semillas del suelo en el refugio de vida Silvestre Escalante, Chacocente. Carazo Nicaragua. Tesis. Universidad Nacional Agraria.

[6]

Castro-Marin G., Tigabu M., González-Rivas B., Odén P.C.. A chronosequence analysis of forest recovery on abandoned agricultural fields in Nicaragua. Journal of Forestry Research, 2009, 20(3): 213-222.

[7]

Chazdom R.L., Coe F.G.. Ethnobotany of woody species in second growth, old-growth, and selectively logged forests of Northeastern Costa Rica. Conservation Biology, 1999, 13: 1312-1322.

[8]

Chokkalingam U., Bhat D.M., Gemmingen G.. Secondary forests associated with the rehabilitation of degraded lands in tropical Asia: A synthesis. Journal of Tropical Forest Science, 2001, 13: 816-831.

[9]

Dalling J.W., Swaine M.D., Garwood N.C.. Soil seed bank community dynamics in seasonally moist lowland tropical forest, Panama. Journal of Tropical Ecology, 1997, 13: 659-680.

[10]

De Villiers A.J., Van Rooyen M.W., Theron G.K.. Similarity between the soils seed bank and the standing Vegetation in the Strandveld succulent Karoo, South Africa. Land Degradation and Development, 2003, 14: 527-540.

[11]

Fenner M.. Seed Ecology. 1985, London: Chapman and Hall

[12]

Finegan B.. The management potential of Neotropical secondary lowland rain forest. Forest Ecology and Management, 1992, 47: 295-321.

[13]

Finegan B.. Pattern and process in neotropical secondary rain forests: the first 100 years of succession. Trees, 1996, 11: 119-124.

[14]

Garwood N.C.. Leck M.A., Parker V.T., Simpson R.L.. Tropical soil seed banks: A Review. Ecology of soil seed banks. 1989, London: Academic press, 149 209

[15]

Guariguata M.R., Ostertag R.. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management, 2001, 148: 185-206.

[16]

Guevara S., Purata S., Van der Maarel E.. The role of remnant forest trees in tropical secondary succession. Vegetatio, 1986, 66: 77-84.

[17]

Guevara S., Laborde J., Sánchez Ríos G.. Rain forest regeneration beneath the canopy of fig trees isolated in pasture of Los Tuxtlas, México. Biotropica, 2004, 36: 98-108.

[18]

Hau H.H.. Tree seed predation on degraded hillsides in Hong Kong. Forest Ecology and Management, 1997, 99: 215-221.

[19]

Holl K.D., Lulow M.E.. Effects of species, habitat, and distance from edge on post-dispersal seed predation in a tropical rainforest. Biotropica, 1997, 29: 459-468.

[20]

Holl K.D.. Factors limiting tropical rain forest regeneration in abandoned pasture: seed rain, seed germination, microclimate, and soil. Biotropica, 1999, 31: 229-242.

[21]

Holl K.D., Loik M.E., Lin E.H.V., Samuels I.A.. Tropical montane forest restoration in Costa Rica: Overcoming barriers to dispersal and establishment. Restoration Ecology, 2000, 8: 339-349.

[22]

Janzen D.H.. Perrow M.R., Davy A.J.. Tropical dry forest: Area de Conservación Guanacaste, northwestern Costa Rica. Handbook of Ecological Restoration, volume 2 Restoration in Practice. 2002, Cambridge: Cambridge University Press, 559 583

[23]

Kollmann J., Pirl M.. Spatial pattern of seed rain of fleshy-fruited plants in a scrubland-grassland transition. Acta Oecologia, 1995, 16: 313-329.

[24]

Krebs CJ. 1998. Ecological Methodology. Second edition. Addison-Wesley Educational Publishers, 620 pp.

[25]

Lamb D., Parrota J., Keenan R., Tucker N.. Laurance W.F., Bierregaard R.O. Jr.. Rejoining habitat remnants: restoring degraded rainforest lands. Tropical forest Remnants. 1997, Chicago: University of Chicago Press, 366 385

[26]

Lemenih M., Teketay D.. Changes in soil seed bank composition and density following deforestation and subsequent cultivation of a tropical dry Afromontane forest in Ethiopia. Tropical Ecology, 2006, 47: 1-12.

[27]

Luzuriaga A.L., Escudero A., Olano J.M., Loidi J.. Regenerative role of seed banks following an intense soil disturbance. Acta Oecologica, 2005, 27: 57-66.

[28]

Mengistu T., Teketay D., Hulten H., Yemshaw Y.. The role of enclosures in the recovery of woody vegetation in degraded dryland hillsides of central and northern Ethiopia. Journal of Arid Environment, 2005, 60: 259-281.

[29]

Miller P.M.. Effects of deforestation on seed bank in a tropical deciduous forest of western Mexico. Journal of Tropical Ecology, 1999, 15: 179-188.

[30]

Murray K.G., Garcia M.. Levey D.J., Silva W.R., Galetti M.. Contributions of seed dispersal to recruitment limitation in a Costa Rican cloud forest. Seed Dispersal and Frugivory: Ecology, Evolution and Conservation. 2002, Wallingford: CAB International, 323 338

[31]

Nepstad D.C., Uhl C., Pereira C.A., Cardoso da Silva J.M.. A comparative study of tree establishment in abandoned pasture and mature forest of eastern Amazonia. Oikos, 1996, 76: 25-39.

[32]

Salas JB. 1993. Arboles de Nicaragua. Instituto Nicaragüense de Recursos Naturales y del Ambiente. — Servicio Forestal Nacional. Managua, Nicaragua.

[33]

Scholz C, González E, Vilchez B. 2004. El banco de semillas del suelo en diferentes estados sucesionales en un bosque seco tropical de Costa Rica. Instituto Tecnológico de Costa Rica. Organización para Estudios Tropicales. Costa Rica. 18 pp.

[34]

Silver W.L., Ostertag R., Lugo A.E.. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restoration Ecology, 2000, 8: 394-407.

[35]

Simpson R.L., Leck M.A., Parker V.T.. Leck M.A., Parker V.T., Simpson R.L.. Seed banks: general concepts and methodological issues. Ecology of Soil Seed Banks. 1989, San Diego: Academic Press, 3 8

[36]

Sips P.A., Van der Liden B.A.. Tropical secondary forest management: Potential, constraints and recommendations. Ecology and Management of tropical secondary forest: Science, People, and Policy. 1998, Turrialba, Costa Rica: CATIE, 1 10

[37]

Teketay D.. The impact of clearing and conversion of dry Afromontane forests into arable land on the composition and density of soil seed banks. Acta Oecologia, 1997, 18: 557-573.

[38]

Teketay D., Granström A.. Soil seed bank in dry Afromontane forests of Ethiopia. Journal of Vegetation Science, 1995, 6: 777-786.

[39]

Teketay D., Granström A.. Seed viability of Afromontane tree species in forest soils. Journal of Tropical Ecology, 1997, 13: 81-95.

[40]

Tekle K., Bekele T.. The role of soil seed banks in the rehabilitation of degraded hill slopes in Southern Wello, Ethiopia. Biotropica, 2000, 32: 23-32.

[41]

Thomlinson J.R., Serrano M.I., del M López T., Aide T.M., Zimmerman J.K.. Land-use dynamics in a post-agriculture Puerto Rican landscape (1936–1988). Biotropica, 1996, 28: 525-536.

[42]

Thompson K.. Fenner M.. The Functional Ecology of Soil Seed Banks. Seeds: The Ecology of Regeneration in Plant Communities, 2000 2 Wallingford: CAB International, 215 235

[43]

Uasuf A., Tigabu M., Odén P.C.. Soil seed banks and Regeneration of Neotropical dry deciduous and gallery forests in Nicaragua. Bois et Forets Des Tropiques, 2009, 299: 49-62.

[44]

Wassie A., Teketay D.. Soil seed banks in church forests of northern Ethiopia: Implications for the conservation of woody plants. Flora, 2006, 201: 32-43.

[45]

Wijdeven S.M.J., Kuzee M.. Seed availability as a limiting factor in forest recovery processes in Costa Rica. Restoration Ecology, 2000, 8: 414-424.

[46]

Wunderle J.M. Jr.. The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands. Forest Ecology and Management, 1997, 99: 223-235.

[47]

Zimmerman J. K., Pascarella J.B., Aide T. M.. Barriers to forest regeneration in an abandoned pasture in Puerto Rico. Restoration Ecology, 2000, 8: 350-360.

AI Summary AI Mindmap
PDF

466

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/