Transpiration surface reduction of Kousa Dogwood trees during serious water imbalance

Fei Wang , Haruhiko Yamamoto

Journal of Forestry Research ›› 2009, Vol. 20 ›› Issue (4) : 337 -342.

PDF
Journal of Forestry Research ›› 2009, Vol. 20 ›› Issue (4) : 337 -342. DOI: 10.1007/s11676-009-0057-4
Research Paper

Transpiration surface reduction of Kousa Dogwood trees during serious water imbalance

Author information +
History +
PDF

Abstract

The response of Kousa dogwood (Cornus kousa Buerg.) to extreme stresses was investigated by RGB image analysis in the hot, dry and windy summer in 2007 in Yamaguch, Japan. Results show that tip and margin leaf scorch was observed on many Kousa dogwood trees and clearly dark brown defense barrier appeared on scorched leaves. The defense barrier withdrew back from distal to proximal gradually until successful control of scorching, and left a series of unsuccessful defense traces. By responsive analysis of leaf color homogeneity with RGB image analysis method, a sharp logistic equation was obtained for the relative green/luminance (RGL) value of scorched leaves. By the meteorological analysis, the occurrence of dogwood leaf scorch-back was almost synchronous with the aridity peak period. It suggested that during the sudden aridity increment the extreme water stresses induce the defense response of Kousa dogwood tree to shear the excessive transpiration leaf area, and prevent the rest of the trees from further water loss. Image pixel analysis showed that 40.2% leaf area of sampled dogwood trees was reduced through the partial leaf scorch-back by the end of August in 2007. In contrast, only 13.2% leaf area was reduced from the same trees in 2008, for the reason of sufficient precipitation during first half year. In any case, the Kousa dogwood trees indeed reduced their transpiration surface area and appeared a surface reduction pattern differing from those shedding leaves or withering all the aboveground. Based on desiccation process analysis, it is considered that the interaction of the leaf dried back and the self-defense response was the key of the transpiration surface reduction (TSR) of Kousa dogwood during sudden hot and droughty stresses.

Cite this article

Download citation ▾
Fei Wang, Haruhiko Yamamoto. Transpiration surface reduction of Kousa Dogwood trees during serious water imbalance. Journal of Forestry Research, 2009, 20(4): 337-342 DOI:10.1007/s11676-009-0057-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Addicott F.T.. Kozlowski T.T.. Physiological ecology of abscission. Shedding of plant parts. 1973, New York: Academic Press, 103 104

[2]

Addicott F.T.. Abscission. 1982, London: University of California Press, 205 207

[3]

Bhat By K.V., Sunrendran T., Swarupanandan K.. Anatomy of branch abscission in Lagerstroemia Macrocarpa Wight. New Phytol, 1986, 133: 177-183.

[4]

Clements H.F.. Significance of transpiration. Plant physiol, 1934, 9: 165-172.

[5]

Fitter A.H., Hay R.K.M.. Environmental physiology of plants. 2002, Landon: Academic Press, 162 169

[6]

Günthardt-Goerg M.S., Vollenweider P.. Linking stress with macroscopic and microscopic leaf response in trees, New diagnostic perspectives. Environ Pollu, 2007, 147: 467-488.

[7]

Kozlowski T.T.. Shedding of plant parts. 1973, New York: Academic Press, 1 117

[8]

Kozlowski T.T.. Kozlowski T.T.. Water supply and leaf shedding. Water deficits and plant growth vol 4. 1976, New York: Academic Press, 191 222

[9]

Kramer P.J.. Water relation of plants. 1983, New York: Academic Press, 187 213

[10]

Liu Y.B., Zhang T.G., Li X.R., Wang G.. Protective mechanism of desiccation tolerance in Reaumuria soongorica: Leaf abscission and sucrose accumulation in the stem. Science China Ser C: Life Science, 2007, 50(1): 15-21.

[11]

Orshan G.. Surface reduction and its significance as a hydroecological factor. J Ecol, 1954, 42: 442-444.

[12]

Orshan G.. Plant pheno-morphological studies in Mediterranean type ecosystems. 1989, Dordrecht: Kluwer Academic Publisher, 398 399

[13]

Rust S., Roloff A.. Acclimation of crown structure to drought in Quercus robur L. Fintra- and inter-annual variation of abscission and traits of shed twigs. Basi App Eco, 2004, 5: 283-291.

[14]

Thornley J.H.M.. Mathematical models in plant physiology. 1976, Landon; New York: Academic Press, 48 50

[15]

Treshow M.. Environment and plant response. 1970, New York: Mcgraw-Hill Publications in the Agricultural science, P22 34

[16]

Vollenweider P., Guünthardt-Goerg M.S.. Erratum to “Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage”. Environ Pollu, 2006, 140: 562-571.

[17]

Wang F., Yamamoto H., Ibaraki Y.. Measuring leaf scorch and chlorosis of bamboo induced by typhoon 0613 with RGB image analysis. Journal of Forestry Research, 2008, 19(3): 225-230.

[18]

Whitehead F.H.. Experimental studies of the effect of wind on plant growth and anatomy. New Phytol, 1963, 62: 80-85.

[19]

Yapp R.H.. Spiraea Ulmaria and its bearing on the problem of xeromorphy in marsh plants. Ann Bot, 1912, 26: 815-70.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/