Small-area estimation of forest stand structure in Jalisco, Mexico

Robin M. Reich , Celedonio Aguirre-Bravo

Journal of Forestry Research ›› 2009, Vol. 20 ›› Issue (4) : 285 -292.

PDF
Journal of Forestry Research ›› 2009, Vol. 20 ›› Issue (4) : 285 -292. DOI: 10.1007/s11676-009-0050-y
Research Paper

Small-area estimation of forest stand structure in Jalisco, Mexico

Author information +
History +
PDF

Abstract

Natural resource statistics are often unavailable for small ecological or economic regions and policymakers have to rely on state-level datasets to evaluate the status of their resources (i.e., forests, rangelands, grasslands, agriculture, etc.) at the regional or local level. These resources can be evaluated using small-area estimation techniques. However, it is unknown which small area technique produces the most valid and precise results. The reliability and accuracy of two methods, synthetic and regression estimators, used in small-area analyses, were examined in this study. The two small-area analysis methods were applied to data from Jalisco’s state-wide natural resource inventory to examine how well each technique predicted selected characteristics of forest stand structure. The regression method produced the most valid and precise estimates of forest stand characteristics at multiple geographical scales. Therefore, state and local resource managers should utilize the regression method unless appropriate auxiliary information is not available.

Cite this article

Download citation ▾
Robin M. Reich, Celedonio Aguirre-Bravo. Small-area estimation of forest stand structure in Jalisco, Mexico. Journal of Forestry Research, 2009, 20(4): 285-292 DOI:10.1007/s11676-009-0050-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cochran W.G.. Sampling techniques. 1977, New York: John Wiley & Sons

[2]

DuMouchel W.H., Duncan G.J.. Using sample survey weights in multiple regression analysis of stratified samples. J. American Statistical Association, 1983, 78: 535-543.

[3]

Fay R.E., Herriot R.A.. Estimation of income for small places: an application of James-Stein procedures to censis data. J. American Statistical Association, 1979, 74: 269-277.

[4]

Flores-Garnica J.G., Mendoza-Briseño M.A., Aguirre-Bravo C.. Monitoreo de ecosistemas con estrategias geostadisticas, una aplicación de gran escala en Jalisco, Mexico. Madera y Bosques, 2007, 13: 97-104.

[5]

Ghosh M., Rao J.N.K.. Small area estimation: an appraisal. Statistical Sciences, 1994, 9: 55-93.

[6]

Kearney M., Porter W.P.. Mapping the fundamental niche: physiology, climate and the distribution of a nocturnal lizard. Ecology, 2004, 85: 3119-3131.

[7]

Laake P.. An evaluation of synthetic estimates of employment. Scandinavian Journal of Statistics, 1978, 5: 57-60.

[8]

Lehtonen R.P., Pahkinen E.. Practical Methods for Design and Analysis of Complex Surveys. 2004, Chichester, England: John Wiley & Sons, Ltd.

[9]

Pfeffermann D. 1999. Small area estimation — Big developments. Keynote Paper, Conference on Small Area Statistics, Riga, Latvia, August 1999.

[10]

Rao J.N.K.. Some recent advances in model-based area estimation. Survey Methodology, 1999, 25: 175-186.

[11]

Rao J.N.K.. Small Area Estimation. 2003, Hoboken, New Jersey: John Wiley & Sons

[12]

Reich R.M., Aguirre-Bravo C., Bravo V.A.. New approach for modeling climatic data with applications in modeling tree species distributions in the States of Jalisco and Colima, Mexico. Journal of Arid Environments, 2008, 72: 1343-1357.

[13]

Reich R.M., Aguirre-Bravo C., Mendoza-Briseño M.A.. An Innovative approach to inventory and monitoring of natural resources in the Mexican State of Jalisco. Journal of Environmental Monitoring and Assessment, 2008, 146: 383-396.

[14]

SEDER-FIPRODEFO. Inventario y Monitoreo de los recursos Naturales del Estado de Jalisco-Reporte 2006. 2007, Guadalajara, Jalisco, Mexico: Gobierno del Estado de Jalisco, Secretaria de Desarrollo Rural (SEDER), Fideicomiso para la Administración del programa de Desarrollo Forestal (FIPRODEFO)

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/