Discriminating ability of molecular markers and morphological characterization in the establishment of genetic relationships in cultivated genotypes of almond and related wild species

Karim Sorkheh , Behrouz Shiran , Soghra Kiani , Nazanin Amirbakhtiar , Sadegh Mousavi , Vahid Rouhi , Shahram Mohammady-D , Thomas M. Gradziel , Lyudmyla V. Malysheva-Otto , Pedro Martínez-Gómez

Journal of Forestry Research ›› 2009, Vol. 20 ›› Issue (3) : 183 -194.

PDF
Journal of Forestry Research ›› 2009, Vol. 20 ›› Issue (3) : 183 -194. DOI: 10.1007/s11676-009-0036-9
Research Paper

Discriminating ability of molecular markers and morphological characterization in the establishment of genetic relationships in cultivated genotypes of almond and related wild species

Author information +
History +
PDF

Abstract

A total 23 morphological traits, 19 AFLP-primer combinations, 80 RAPD primers and 32 SSR primer pair were used to compare the informativeness and efficiency of random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers in establishing genetic relationships among 29 almond cultivars and three related wild species. SSRs presented a high level of polymorphism and greater information content, as assessed by the expected hetrozygosity, compared to AFLPs and RAPDs. The lowest values of expected hetrozygosity were obtained for AFLPs; however AFLPs showed the highest efficiency, owing to their capacity to reveal large numbers of bands per reaction, which led to high values for various types of indices of diversity. All the three techniques discriminated almond genotypes very effectively, except that SSRs failed to discriminate between ‘Monagha’ and ‘Sefied’ almond genotypes. The correlation coefficients of similarity were statistically significant for all the three marker systems, but were lower for the SSR data than for RAPDs and AFLPs. For all the markers, high similarity in dendrogram topologies was obtained, although some differences were observed. All the dendrograms, including that obtained by the combined use of all the marker data, reflect relationships for most of cultivars according to their geographic diffusion. AMOVA detected more variation among cultivated and related wild species of almond within each geographic group. Bootstrap analysis revealed that the number of markers used was sufficient for reliable estimation of genetic similarity and for meaningful comparisons of marker types.

Keywords

Amplified Fragment Length Polymorphisms (AFLPs) / Random Amplified Polymorphic DNA (RAPDs) / Simple-Sequence Repeats (SSRs) / germplasm / genetic relationships / breeding / prunus dulcis

Cite this article

Download citation ▾
Karim Sorkheh, Behrouz Shiran, Soghra Kiani, Nazanin Amirbakhtiar, Sadegh Mousavi, Vahid Rouhi, Shahram Mohammady-D, Thomas M. Gradziel, Lyudmyla V. Malysheva-Otto, Pedro Martínez-Gómez. Discriminating ability of molecular markers and morphological characterization in the establishment of genetic relationships in cultivated genotypes of almond and related wild species. Journal of Forestry Research, 2009, 20(3): 183-194 DOI:10.1007/s11676-009-0036-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aranzana M.J., García-Mas J., Carbo J., Arus P.. Development and variability analysis of microsatellite markers in peach. Plant Breed, 2002, 121: 87-92.

[2]

Arulsekar S., Parfitt D.E., Kester D.E.. Comparison of isozyme variability in peach and almond cultivars. J Hered, 1986, 77: 272-274.

[3]

Barbosa A.M.M., Geraldi I.O., Benchimol L.L., Garcia A.A.F., Souza J.R.C.L., Souza A.P.. Relationships of intra- and inter-population maize single crosses hybrid performance and genetic distances computed from AFLP and SSR markers. Euphytica, 2003, 130: 87-99.

[4]

Bartolozzi F., Warburton M.L., Arulsekar S., Gradziel T.M.. Genetic characterization and relatedness among California almond cultivars and breeding line detected by randomly amplified polymorphic DNA (RAPD) analysis. J Am Soc Hort Sci, 1998, 123: 381-387.

[5]

Barlett M.S.. Some examples of statistical methods of research in agriculture and applied biology. J R Stat Soc, 1937, 4: 137-170.

[6]

Bassam B.J., Caetano-Anolles G.. Silver staining of DNA in polyacrylamide gels. Appl Biochem Biotech, 1993, 42: 181-188.

[7]

Becker J., Vos P., Kuiper M., Salamini F., Heun M.. Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet, 1995, 249: 65-73.

[8]

Belaj A., Satovic Z., Cipriani G., Baldoni L., Testolin R., Rallo L., Trujillo I.. Comparative study of discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor Appl Genet, 2003, 107: 736-744.

[9]

Beyene Y., Botha A.-M., Myburg A.A.. A comparative study of molecular and morphological methods of describing genetic relationships in traditional Ethiopian highland maize. Afric J Biot, 2005, 47: 586-595.

[10]

Bliss F.A., Arulsekar S., Foolad M.R., Becerra V., Gillen A.M., Warburton M.L., Dandekar A.M., Kocsisne G.M., Mydin K.K.. An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome, 2002, 45: 520-529.

[11]

Browicz K., Zohary D.. The genus Amygdalus L. (Rosaceae): species relationships, distribution and evolution under domestication. Genet Resour Crop Evol, 1996, 43: 229-247.

[12]

Buteler M.I., Jarret R.L., LaBonte D.R.. Sequence characterization of microsatellites in diploid and polyploid Ipomoea. Theor Appl Genet, 1999, 99: 123-132.

[13]

Cerezo M., Socias i company R., Vargas F.. Identification of almond cultivars by pollen isoenzymes. J Am Soc Hort Sci, 1989, 114: 164-169.

[14]

Channuntapipat C., Wirthensohn M., Ramesh S.A., Batlle I., Arus P., Sedgley M., Collins G.. Identification of incompatibility genotypes in almond (Prunus dulcis Mill.) using specific primers based on the introns of the S-alleles. Plant Breed, 2003, 122: 164-168.

[15]

Cipriani G., Lot G., Huang W.G., Marrazzo M.T., Peterlunger E., Testolin R.. AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L.) Batsch): isolation, characterization and amplification in Prunus. Theor Appl Genet, 1999, 100: 713-722.

[16]

Clarke J.B., Tobutt K.R.. Development and characterization of polymorphic microsatellites from Prunus avium ‘Napoleon’. Mol Ecol Notes, 2003, 3: 578-580.

[17]

Dice L.R.. Measures of the amount of ecologic association between species. Ecology, 1945, 26: 297-302.

[18]

Dicenta F., García J.E.. Phenotypical correlations among some traits in almond. J Genet Breed, 1992, 46: 241-246.

[19]

Dirlewanger E., Crosson A., Tavaud P., Aranzana M.J., Poizat C., Zanetto A., Arus P., Laigret L.. Development of microsatelite markers in peach and their use in genetic diversity analysis in peach and sweet cherry. Theor Appl Genet, 2002, 105: 127-138.

[20]

Downey S.L., Iezzoni A.F.. Polymorphic DNA markers in black cherry are identified using sequences from sweet cherry, peach and sour cherry. J Am Soc Hort Sci, 2000, 125: 76-80.

[21]

Dos Santos J.B., Nienhuis J., Skroch P., Tivang J., Slocum M.K.. Comparison of RFLP genetic markers in determining genetic similarity among Brassica oleracea L. genotypes. Theor Appl Genet, 1994, 87: 909-915.

[22]

Excoffier L. 1992. Winamova ver 1.55-analysis of molecular variance-graphical windows 3.x program for the analysis of population structure from molecular or conventional genetic data. http://anthropologie.unige.ch/LGB/software/win/amova/

[23]

Excoffier L., Smouse P., Quattro J.. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 1992, 131: 479-491.

[24]

Fuentes J.L., Escobar F., Alvarez A., Gallego G., Duque M.C., Ferrer M., Deus J.E., Tohme J.M.. Analyses of genetic diversity in Cuban rice varieties using isozyme, RAPD and AFLP markers. Euphytica, 1999, 109: 107-115.

[25]

Georgi L.L., Wang Y., Yvergniaux D., Ormsbee T., Inigo M., Reighard G., Abbott A.G.. Construction of a BAC library and its application to the identification of simple sequence repeats in peach [Prunus persica (L.) Batsch]. Theor Appl Genet, 2002, 105: 1151-1158.

[26]

Hahn V., Blankenhorn K., Schawall M., Melchinger A.E.. Relationships among early European maize inbreds: III. Genetic diversity revealed with RAPD markers and comparison with RFLP and pedigree data. Maydica, 1995, 40: 299-310.

[27]

Hallden C., Nilsson N.O., Rading I.M., Sall T.. Evaluation of RFLP and RAPD markers in comparison of Brassica napus breeding lines. Theor Appl Genet, 1994, 88: 123-128.

[28]

Hauagge R., Kester D.E., Arulsekar S., Parfitt D.E., Liu L.. Isozyme variation among California almond cultivars. II. Cultivar characterization and origins. J Am Soc Hort Sci, 1987, 112: 693-698.

[29]

Hormaza J.I.. Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theor Appl Genet, 2002, 104: 321-328.

[30]

Jones C.J., Edwards K.J., Castaglione S., Winfield M.O., Sala F., van de Wiel C., Bredemeijer G., Vosman B., Matthes M., Daly A., Brettschneider R., Bettini P., Buiatti M., Maestri E., Malcevschi A., Marmiroli N., Aert R., Volckaert G., Rueda J., Linacero R., Vazquez A., Karp A.. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed, 1997, 3: 381-390.

[31]

Kester D.E., Gradziel T.M.. Janick J., Moore J. N.. Almonds. Fruit breeding, Almond. 1996, New York: Wiley, 1 97

[32]

King G., Nienhuis J., Hussey C.. Genetic similarity among ecotypes of Arabidopsis thaliana estimated by analysis of restriction fragment length polymorphisms. Theor Appl Genet, 1993, 86: 1028-1030.

[33]

Ladizinsky G.. On the origin of almond. Genet Res Crop Evol, 1999, 46: 143-147.

[34]

Lamboy W.F., Yu J., Forsline P.L., Weeden N.F.. Partitioning of allozyme diversity in wild populations of Malus sieversii L. and implications for germplasm collection. J Am Soc Hort Sci, 1996, 121: 982-987.

[35]

Lopes M.S., Sefc K.M., Laimer M., Machado A.D.. Identification of microsatellite loci in apricot. Mol Ecol Notes, 2002, 2: 24-26.

[36]

Lynch M., Walsh J.B.. Genetic and Analysis of Quantitative Traits. 1998, Sunderland, MA: Sinauer Assocs., Inc.

[37]

McGregor C.E., Lambert C.A., Greyling M.M., Louw J.H., Warnich L.. A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica, 2000, 113: 135-144.

[38]

Messina R., Lain O., Marrazzo M.T., Cipriani G., Testolin R.. New set of microsatellite loci isolated in apricot. Mol Ecol Notes, 2004, 4: 432-434.

[39]

Messmer M.M., Melchinger A.E., Boppenmaier J., Herrmann R.G.. Relationships among early European maize (Zea mays L.) inbred Lines: II. Comparison of pedigree and RFLP data. Crop Sci, 1993, 33: 944-950.

[40]

Mantel N.. The detection of disease clustering and generalized regression approach. Cancer Res, 1967, 27: 209-220.

[41]

Martínez-Gómez P., Arulsekar S., Potter D., Gradziel T.M.. An extended inter-specific gene pool available to peach and almond breeding as characterized using simple sequence repeat (SSR) markers. Euphytica, 2003, 131: 313-322.

[42]

Martínez-Gómez P., Arulsekar S., Potter D., Gradziel T.M.. Relationships among peach and almond and related species as detected by SSRs. J Am Sco Hort Sci, 2003, 128: 667-671.

[43]

Martínez-Gómez P., Sánchez-Pérez R., Dicenta F., Howad W., Arus P., Gradziel T.M.. Kole C.R.. Almonds. In Genome Mapping and Molecular Breeding. Volume 4: Fruits & Nuts. 2007, Heidelberg, Berlin, New York, Tokio: Springer., 229 242

[44]

Martins M., Tenreiro R., Oliveira M.. Genetic relatedness of Portuguese almond collection assessed by RAPD and ISSR markers. Plant Cell Rep, 2003, 22: 71-78.

[45]

Mnejja M., Garcia-Mas J., Howad W., Badenes M.L., Arús P.. Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina L.) are highly polymorphic and transferable to peach and almond. Mol Ecol Notes, 2004, 4: 163-165.

[46]

Mnejja M., Garcia-Mas J., Howad W., Arus P.. Development and transportability across Prunus species of 42 polymorphic almond microsatelites. Mol Ecol Notes, 2005, 5: 531-535.

[47]

Moradi H. 2005. Study of quantitative and qualitative characteristics of some almond cultivars in Shahrekord, IV International Symposium on Pistachios & Almonds. Tehran (IRAN), 22–25 May (2005)

[48]

Mir Ali N., Nabulsi I.. Genetic diversity of almond (Prunus dulcis) using RAPD technique. ScientiaHort, 2003, 98: 461-471.

[49]

Milbourne D., Meyer R., Bradshaw J.E., Baird E., Bonar N., Provan J., Powell W., Waugh R.. Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol Breed, 1997, 3: 127-136.

[50]

Minelli S., Maggini F., Gelati M.T., Angiolillo A., Cionini P.G.. The chromosome complement of Olea europaea L.: characterization by differential staining of the chromatin and in situ hybridization of highly repeated DNA sequences. Chromosome Res, 2000, 8: 615-619.

[51]

Morgante M., Rafalski A., Biddle P., Tingey S., Olivieri A.M.. Genetic mapping and variability of seven soybean sample sequence repeat loci. Genome, 1994, 37: 763-769.

[52]

Oraguzie N.C., Gardiner S.E., Basset C.M., Stefanati M., Ball R.D., Bus V.G.M., White A.G.. Genetic diversity and relationships in Malus sp. germplasm collections as determined by randomly amplified polymorphic DNA. J Am Soc Hort Sci, 2001, 126: 318-328.

[53]

Pejic I., Ajmone-Marsan P., Morgante M., Kozumplik V., Castiglioni P., Taramino G., Motto M.. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor Appl Genet, 1998, 97: 1248-1255.

[54]

Powell W., Morgante M., Andre C., Hanafey M.M., Vogel J., Tingey S., Rafalski A.. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed, 1996, 2: 225-238.

[55]

Resta P., Corona M. G., Fanizza G., Palasciano M., Godini A.. Random amplified DNA polymorphism in Amygdalus communis L. and A. webbii Spach. Acta Hort, 1998, 470: 82-90.

[56]

Rohlf FJ. 1998. NYSYS-pc. Numerical Taxonomy and Multivariate Analysis System, Version 2.02 Exeter Software, Setauket, NY.

[57]

Roland-Ruiz I., Van Eeuwijk F. A., Gilliland T.J., Dubreuil P., Dillmann C., Lallemand J., De Loose M.. A comparative study of molecular and morphological methods of describing relationships between perennial ryegrass (Lolium perenne L.) varieties. Theor Appl Genet, 2001, 103: 1138-1150.

[58]

Sánchez-Pérez R., Ballester J., Dicenta F., Arús P., Martínez-Gómez P.. Comparison of SSR polymorphisms using automated capillary sequencers, and polyacrylamide and agarose gel electrophoresis: implications for the assessment of genetic diversity and relatedness in almond. ScientiaHort, 2006, 108: 310-316.

[59]

Sanchez-Perez R., Ortega E., Duval H., Martinez-Gomez P., Dicenta F.. Inheritance and relationships of important agronomic traits. Euphytica, 2007, 155: 381-391.

[60]

SAS Institute. SAS language guide for personal computers, 1999 Release 8.0 editions Cary NC, USA: SAS Inst.

[61]

Schueler S., Tusch A., Schuster M., Ziegenhagen B.. Characterization of microsatellites in wild and sweet cherry (Prunus avium L.) markers for individual identification and reproductive processes. Genome, 2003, 46: 95-102.

[62]

Scorza R., Sherman W.B.. Janick J., Moore J.N.. Peaches. Fruit breeding. 1996, New York: Wiley, 285 326

[63]

Shiran B., Ameirbakhtiar N., Kiani S., Mohamadi S., Tabatabaei B.E.S., Moradi H.. Molecular characterization and genetic relationships among almond cultivars assessed by RAPD and SSR markers. ScientiaHort, 2005, 111: 280-292.

[64]

Sorkheh K.. Application of molecular markers techniques in plant breeding. Scientific and Specific monthly in Agriculture, 2006, 171: 34-37.

[65]

Sorkheh K., Shiran B., Gradziel T.M., Epperson B.K., Martínez-Gómez P., Asadi E.. Amplified Fragment Length Polymorphism as a tool for molecular characterization of almond germplasm: genetic diversity among cultivated genotypes and related wild species of almond, and its relationships with agronomic traits. Euphytica, 2007, 156: 327-344.

[66]

Sorkheh K., Shiran B., Aranzana M.J., Mohammadi S.A., Martínez-Gómez P.. Application of amplified fragment length polymorphism (AFLPs) analysis to plant breeding and genetics: procedures, applications and prospects. J food Agr Env, 2007, 5(1): 197-204.

[67]

Sorkheh K., Malysheva-Otto L.V., Wirthensohn M.G., Tarkesh-Esfahani S., Martínez-Gómez P.. Linkage Disequilibrium, Genetic Association Mapping and Gene Localization in Crop Plants. J Genet Mol Biol, 2008, 31(4): 805-814.

[68]

Sorkheh K, Shiran B, Rouhi V, Asadi E, Jahanbazi H, Moradi H, Gradziel TM, Martínez-Gómez P. 2009. Phenotypic diversity within native Iranian almond species and their breeding potential. Genet Resour Crop Evol, DOI in press.

[69]

Sosinski B., Gannavarapu M., Hager L.D., Beck L.E., King G.J., Ryder C.D., Rajapakse S., Baird W.V., Ballard R.E., Abbott A.G.. Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch.]. Theor Appl Genet, 2000, 101: 421-428.

[70]

Staub J.E., Danin-Poleg Y., Fazio G., Horejsi T., Reis N., Katzir N.. Comparative analysis of cultivated melon groups (Cucumis melo L.) using random amplified polymorphic DNA and simple sequence repeat markers. Euphytica, 2000, 115: 225-241.

[71]

Stewart C.N., Excoffier L.. Assessing population structure and variability with RAPD data: application to Vaccinium macrocarpon (American cranberry). J Evol Biol, 1996, 9: 153-171.

[72]

Testolin R., Marrazzo T., Cipriani G., Quarta R., Verde I., Dettori M.T., Pancaldi M., Sansavini S.. Microsatelite DNA in Peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome, 2000, 43: 512-520.

[73]

Testolin R., Messina R., Lain O., Marrazzo M.T., Huang W.G., Cippiani G.. Microsatellites isolated in almond from an AC repeat enriched library. Mol Ecol Notes, 2004, 4: 459-461.

[74]

Thormann C.E., Ferreira M.E., Camargo L.E.A., Tivang J.G., Osborn T.C.. Comparison of RFLP and RAPD markers to estimating genetic relationships within and among cruciferous species. Theor Appl Genet, 1994, 88: 973-980.

[75]

Tivang J.G., Nienhuis J., Smith O.S.. Estimation of sampling variance of molecular marker data using the bootstrap procedure. Theor Appl Genet, 1994, 89: 259-264.

[76]

Vezvaei A.. Isozyme diversity in Iranian almond. Acta Hort, 2003, 622: 451-456.

[77]

Vos P., Hogers R., Bleeker M., Reijans M., Van de Lee T., Hornes M., Peleman J., Zabeau M.. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res, 1995, 23: 4407-4414.

[78]

Wang Y., Georgi L.L., Zhebentyayeva T.N., Reighard G.L., Scorza R., Abbott A.G.. High-throughput targeted SSR marker development in peach. Genome, 2002, 45: 319-328.

[79]

Williams J.K., Kubelik A.R., Rafalski J.A., Tingey S.V.. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990, 18: 6531-6535.

[80]

Woolley F.M., Collins G.G., Sedgely M.. Application of DNA fingerprinting for the classification of selected almond [Prunus dulcis (Miller) D. A. Webb] cultivars. Aust J Exp Agr, 2000, 40: 995-1001.

[81]

Wu K.-s., Tanksely S.D.. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet, 1993, 241: 225-235.

[82]

Xie H., Sui Y., Chang F.Q., Xu Y., Ma R.C.. SSR allelic variation in almond (Prunus dulcis Mill.). Theo and Appl Genet, 2006, 112: 366-372.

[83]

Xu Y., Ma R.C., Xie H., Cao M.Q.. Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region. Genome, 2004, 47: 1091-1104.

[84]

Zeinalabedini M., Majourhat K., Khayam-Nekoui M., Grigorian V., Torchi M., Dicenta F., Martínez-Gómez P.. Comparison of the use of morphological, protein and DNA markers in the genetic characterization of Iranian wild Prunus species. Scienti Hort, 2008, 116: 80-88.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/