A chronosequence analysis of forest recovery on abandoned agricultural fields in Nicaragua

Guillermo Castro Marín , Mulualem Tigabu , Benigno González-Rivas , Per Christer Odén

Journal of Forestry Research ›› 2009, Vol. 20 ›› Issue (3) : 213 -222.

PDF
Journal of Forestry Research ›› 2009, Vol. 20 ›› Issue (3) : 213 -222. DOI: 10.1007/s11676-009-0034-y
Research Paper

A chronosequence analysis of forest recovery on abandoned agricultural fields in Nicaragua

Author information +
History +
PDF

Abstract

Species composition, diversity and population structure of woody species recovered on three abandoned agricultural fields after 4, 9 and 14 years were characterized. Seedlings, saplings/poles and mature trees were identified and counted in 70 plots of 100 m2 in each abandoned site. A total of 13, 29 and 22 families represented by 17, 48 and 44 species were registered in 4, 9 and 14 year-old stands, respectively. There was a shift in dominant species across successional stages. Lonchocarpus acuminatus had the highest importance value in the 4-year old stand, whereas, Myrospermun frutescens, Guazuma ulmifolia and Cordia alliodora had the highest importance value in the 9-year-old-stand and Caesaeria corymbosa, Muntingia calabura, Gliricidia sepium and Tabebuia rosea in the 14-year old stand. The total stem density increased from 5011 to 9631 individuals per hectare as the age of abandonment increased from 4 to 14 years. The total basal area of individuals ≥ 1cm d.b.h. also increased with the age of abandonment. Overall, small individuals (< 10 cm dbh) contributed to more than half of the total basal area. Species diversity was the highest in the 9-year old stand followed by 14- and 4-year old stands. We concluded that floristic composition of secondary forests recovers rapidly to the mature forest level compared to structural attributes, which is consistent with the general successional trajectories of tropical dry forest.

Cite this article

Download citation ▾
Guillermo Castro Marín, Mulualem Tigabu, Benigno González-Rivas, Per Christer Odén. A chronosequence analysis of forest recovery on abandoned agricultural fields in Nicaragua. Journal of Forestry Research, 2009, 20(3): 213-222 DOI:10.1007/s11676-009-0034-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aide T.M., Zimmerman J.K., Pascarella J.B., Rivera L., Marcano-Vega H.. Forest Regeneration in Chronosequence of Tropical Abandoned Pasture: Implications for Restoration Ecology. Restoration Ecology, 2000, 8: 328-338.

[2]

Anonymous, 1994. Plan de Manejo del bosque seco de la Cooperativa Pedro Joaquín Chamorro, Nandarola, Nandaime, Granada. Proyecto de Protección del Bosque Latífoliado.

[3]

Brown S., Lugo A.E.. Tropical secondary forest. Journal of Tropical Ecology, 1990, 6: 1-32.

[4]

Bullock S.H.. Bullock S.H., Mooney H.A., Medina E.. Plant reproduction in Neotropical dry forests. Seasonally dry tropical forests. 1995, Cambridge: Cambridge University Press, 277 303

[5]

Castro-Marin G., Nygård R., Gonzalez-Rivas B., Odén P.C.. Stand dynamics and basal area change in a tropical dry forest reserve in Nicaragua. Forest Ecology and Management, 2005, 208: 63-75.

[6]

Chacón M.R., López A.. Caracterización florística y estructural de la vegetación secundaria joven en el bosque seco caduciflio de Chacocente. Trab. Diplo.. 1994, Nicaragua: Univ. Nac. Agraria, Fac. Rec. y del Amb. Managua

[7]

Chazdon R.L., Coe F.G.. Ethnobotany of woody species in second growth, old-growth, and selectively logged forests of Northeastern Costa Rica. Conservation Biology, 1999, 13: 1312-1322.

[8]

Chokkalingam U., De Jong W.. Secondary forest: a working definition and typology. International Forestry Review, 2001, 3: 19-26.

[9]

Denslow J.S.. White P.S., Mucina L., Lep J.. Patterns of structure and diversity across a tropical moist forest chronosequence. Vegetation Science in Retrospect and Perspective. 2000, Uppsala: Opulus Press, 238 242

[10]

Dickinson M.B., Hermann S.M., Whigham D.F.. Low rate of background canopy-gap disturbance in a seasonally dry forest in the Yucatan Peninsula with a history of fires and hurricanes. Journal of Tropical Ecology, 2001, 17: 895-902.

[11]

Ewel J.J.. Differences between wet and dry successional tropical ecosystem. Geo-Eco-Trop, 1977, 1: 103-117.

[12]

Ewel J.. Golley F. B.. Succession in tropical rain forest ecosystems: Structure and function. Ecosystems of the World. 1983, Amsterdam: Elsevier, 217 223

[13]

Finegan B.. Pattern and process in neotropical secondary rain forest: the first hundred years of succession. Trends in Ecology and Evolution, 1996, 11: 119-124.

[14]

Gonzalez-Rivas B., Tigabu M., Gerhardt K., Castro-Marin G., Odén P.C.. Species composition, diversity and local uses of dry deciduous and gallery forests in Nicaragua. Biodiversity and Conservation, 2006, 15: 1509-1527.

[15]

Gerhardt K.. Effect of root competition and Canopy openness on survival and growth of tree seedlings in a tropical seasonally dry forest. Forest Ecology & Management, 1996, 82: 33-48.

[16]

Guariguata M. R., Chazdon R.L., Denslow J.S., Dupuy J.M., Anderson L.. Structure and floristic of secondary and old-growth forest stands in lowland Costa Rica. Plant Ecology, 1997, 132: 107-120.

[17]

Guariguata M.R., Ostertag R.. Neotropical secondary succession: changes in structural and functional characteristics. Forest Ecology and Management, 2001, 148: 185-206.

[18]

Holbrook N.M., Whitbeck J.L., Mooney H.A.. Bullock S.H., Mooney H.A., Medina E.. Drought responses of Neotropical dry forest trees. Seasonally dry tropical forests. 1995, Cambridge: Cambridge University Press, 243 276

[19]

Holl K.D., Loik M.E., Lin E.H.V., Samuels I.A.. Tropical montane forest restoration in Costa Rica: Overcoming barriers to dispersal and establishment. Restoration Ecology, 2000, 8: 339-349.

[20]

Janzen D.. Management of habitat fragments in a tropical dry forest: growth. Annals of the Missouri Botanical Garden, 1988, 75: 105-116.

[21]

Janzen D.. Perrow M.R., Davy A.J.. Tropical dry forest: Area de Conservación Guanacaste, northwestern Costa Rica. Handbook of Ecological Restoration, volume 2 Restoration in Practice. 2002, Cambridge: Cambridge University Press, 559 583

[22]

Kalacska M., Sanchez-Azofeifa G.A., Calvo-Alvarado J.C., Quesada M., Rivard B., Janzen D.H.. Species composition, similarity and diversity in three successional stages of a seasonally dry tropical forest. Forest Ecology and Management, 2004, 200: 227-247.

[23]

Kennard D.K.. Secondary forest succession in a tropical dry forest: patterns of development across a 50-year chronosequence in lowland Bolivia. Journal Tropical Ecology, 2002, 18: 53-66.

[24]

Ky-Dembele C., Tigabu M.. The relative importance of different regeneration mechanisms in a selectively cut savanna-woodland in Burkina Faso, West Africa. Forest Ecology and Management, 2007, 243: 28-38.

[25]

Lamb D., Parrota J., Keenan R., Tucker N.. Laurance W.F., Bierregaard R.O. Jr.. Rejoining habitat remnants: restoring degraded rainforest lands. Tropical Forest Remnants. 1997, Chicago: University of Chicago Press, 366 385

[26]

Lebrija-Trejos E., Bongers F., Pérez-García E.A., Meave J.A.. Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica, 2008, 40: 422-431.

[27]

Lugo A.E., Helmer E.. Emerging forests on abandoned land: Puerto Rico’s new forests. Forest Ecology and Management, 2004, 190: 145-161.

[28]

Magurran A.E.. Measuring Biological Diversity. 2004, Malden, MA, USA: Blackwell Science

[29]

Martin P.H.. Forty years of tropical forest recovery from agriculture: structure and floristics of secondary and old-growth riparian forests in the Dominican Republic. Biotropica, 2004, 36: 297-317.

[30]

Peet R.K.. Glenn-Lewin D.C., Peet R.K., Veblen T.T.. Community structure and ecosystem properties. Plant succession: theory and prediction. 1992, London: Chapman and Hall, 102 151

[31]

Peña-Claros M.. Changes in forest structure and species composition during secondary succession in the Bolivian Amazon. Biotropica, 2003, 35: 450-461.

[32]

Perkulis A.M., Ramos P. J., Jiménez-Osornio J.J.. Composition, structure and management potencial of secondary dry tropical vegetation in two abandoned henequen plantations of Yucatan, Mexico. Forest Ecology and Management, 1997, 94: 79-88.

[33]

Pitman N.C.A., Terbirgh J., Silman M.R., Nuñez V.P.. Tree species distribution in a upper Amazonian forest. Ecology, 1999, 80: 2651-2661.

[34]

Peterson C.J., Haines B.L.. Early Successional Patterns and Potential Facilitation of Woody Plan Colonization by Rotting Logs in Premontane Costa Rican Pasture. Restoration Ecology, 2000, 8: 361-369.

[35]

Rodríguez I, Aguirre C, Mendoza B. 2003. Actualización del Estado del recurso suelo y capacidad de uso de la tierra de los municipios de Santa Teresa y Nandaime. Facultad de Recursos Naturales y del Ambiente, Universidad Nacional Agraria. Proyecto Sur-Oeste de Nicaragua IDR-GTZ.

[36]

Sabogal C., Valerio L.. Dallmeier F., Comiskey J.A.. Forest composition, structure and regeneration in a dry forest of the Nicaraguan Pacific coast. Forest Biodiversity in North Central and South America, and the Caribbean: Research and Monitoring. 1998, New York: Man and The Biosphere Series, 187 212

[37]

Sáenz G.P., Finegan B.. Monitoreo de la regeneración natural con fines de manejo forestal. Turrialba. 2000, Costa Rica: Manejo Forestal Tropical, 8.

[38]

Silver W.L., Ostertag R., Lugo A.E.. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restoration Ecology, 2000, 8: 394-407.

[39]

Stevens WD, Ulloa CU, Pool A, Montiel OM. 2001. Flora de Nicaragua. Missouri Botanical Garden Press

[40]

Swaine M.D.. Characteristics of dry forests in West Africa and the influence of fire. Journal of Vegetation Science, 1992, 3: 365-374.

[41]

Thomlinson J.R., Serran M.I., del M López T., Aide T.M., Zimmerman J.K.. Land-use dynamics in a post-agriculture Puerto Rican landscape (1936–1988). Biotropica, 1996, 28: 525-536.

[42]

Tucker J., Brondizzio E.S., Moran E.F.. Rates of forest regrowth in Eastern Amazonia: a comparison of Altamira and Bragantina regions, Para State, Brazil. Interciencia, 1998, 23: 1-10.

[43]

Uhl C., Buschbacher R., Serrão E.A.S.. Abandoned pastures in Eastern Amazonia. I. Patterns of plant succession. Journal Ecology, 1988, 76: 663-681.

[44]

Vesk P.A., Westoby M.. Sprouting ability across diverse disturbances and vegetation types worldwide. Journal of Ecology, 2004, 92: 310-320.

[45]

Vieira D.L.M., Scariot A.. Principles of natural regeneration of tropical dry forests for restoration. Restoration Ecology, 2006, 14: 11-20.

[46]

Whitmore T.C.. A pantropical perspective on the ecology that underpins management of tropical secondary rain forest. Ecology and Management of tropical secondary forest: Science, People, and Policy. 1998, Turrialba, Costa Rica: CATIE Serie Técnica, 19 34

[47]

Wijdeven S.M.J., Kuzee M.E.. Seed availability as a limiting factor in forest recovery processes in Costa Rica. Restoration Ecology, 2000, 8: 414-424.

[48]

Zimmerman J.K., Pascarella J.B., Aide T.M.. Barriers to forest regeneration in an abandoned pasture in Puerto Rico. Restoration Ecology, 2000, 8: 350-360.

AI Summary AI Mindmap
PDF

235

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/