Biodiversity and biotechnological potential of mangrove-associated fungi

Zhong-shan Cheng , Jia-Hui Pan , Wen-cheng Tang , Qi-jin Chen , Yong-cheng Lin

Journal of Forestry Research ›› 2009, Vol. 20 ›› Issue (1) : 63 -72.

PDF
Journal of Forestry Research ›› 2009, Vol. 20 ›› Issue (1) : 63 -72. DOI: 10.1007/s11676-009-0012-4
Review Article

Biodiversity and biotechnological potential of mangrove-associated fungi

Author information +
History +
PDF

Abstract

This review describes the present hot research areas of mangrove-associated fungi, including its biodiversity, ecological roles, novel metabolites productions and biotechnological potential. Mangrove-associated fungi were divided into saprophytic, parasitic and true symbiotic fungi based on its ecological roles. Saprophytic fungi are fundamental to decomposition and energy flow of mangrove, additionally, their potential toxicity also exists. Pathogenic fungi have significant effects on mangrove survival, growth, and fitness. Endophytic fungi, the most prolific source of diverse bioactive compounds found among that of mangrove-associated fungi, are found in most species of mangroves. Although a significant number of reports focused on the antimicrobial, insecticidal and other bioactive metabolites as well as many novel enzymes isolated from mangrove-associated fungi, and many of those metabolites from endophytic fungi are suspected to be of significant to mangrove, only few studies have provided convincing evidence for symbiotic producers in mangrove. Hence, this paper discusses the present progress of molecular methods used to correlate the ecological roles of endophytic fungi with their bioactive metabolites;, meanwhile, the potential of using metabolic engineering and post-genomic approaches to isolate more novel enzymes and bioactive compounds and to make their possible commercial application was also discussed.

Keywords

Mangrove fungi / Biodiversity / Bioactive metabolites / Commercial application

Cite this article

Download citation ▾
Zhong-shan Cheng, Jia-Hui Pan, Wen-cheng Tang, Qi-jin Chen, Yong-cheng Lin. Biodiversity and biotechnological potential of mangrove-associated fungi. Journal of Forestry Research, 2009, 20(1): 63-72 DOI:10.1007/s11676-009-0012-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdel-Wahab M.A.A.. Diversity of marine fungi from Egyptian Red Sea mangroves. Bot Mar, 2005, 48: 248-355.

[2]

Abdel-Wahab M.A.A., Pang K.L., EI-Sharouny H.M., Jones E.B.G.. Halosarpheia unicellularis sp. nov (Halosphaeriales, Ascomycota) based on morphological and molecular evidence. Mycoscienc, 2001, 42: 255-260.

[3]

Alias S.A., Kuthubutheen A.J., Jones E.B.G.. Frequency of occurrence of fungi on wood in Malaysian mangroves. Hydrobiologia, 1995, 295: 97-106.

[4]

Alias S.A., Jones E.B.G.. Vertical distribution of marine fungi on Rhizophora apiculata at Morib mangrove, Selangor, Malaysia. Mycoscience, 2000, 41: 431-436.

[5]

Agatsuma T., Takahashi A., Kabuto C., Nozoe S.. Revised structure and stereochemistry of hypothemycin. Chem Pharm Bull, 1993, 41: 373-375.

[6]

Bailey J.E.. Mathematical modeling and analysis in biochemical engineering: past accomplishments and future opportunities. Biotechnol Progr, 1998, 14: 8-20.

[7]

Baschien C, Manz W, Neu TR, Marvanová L, Szewzyk U. 2008. In situ detection of freshwater fungi in an alpine stream by new taxon-specific FISH probes. Appl Environ Microbiol, doi:10.1128/AEM.00815-08.

[8]

Bhadury P, Mohammad BT, Wright PC. 2006. The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol, DOI: 10.1007/s10295-005-0070-3.

[9]

Bhaluni DS, Rawat DS. 2005. Bioactive marine natural products. Springer Press.

[10]

Bourguet-Kondracki ML, Kornprobst JM. 2005. Marine pharmacology: potentialities in the treatment of infectious diseases, osteoporosis and Alzheimer’s disease. Adv Biochem Engin/Biotechnol, DOI 10.1007/b135824.

[11]

Bremer G.B.. Lower marine fungi (labyrinthulomycetes) and the decay of mangrove leaf litter. Hydrobiologia, 1995, 295: 89-95.

[12]

Burtseva Y.V., Verigina N.S., Sova V.V., Pivkin M.V., Zvyagintseva T.N.. Filamentous marine fungi as producers of o-glycosylhydrolases: β-1, 3-glucanase from Chaetomium idicum. Mar Biotechnol, 2003, 5: 349-359.

[13]

Cardellina J.H.. Marine natural products as leads to new pharmaceutical and agrochemical agents. Pure Appl Chem, 1986, 58: 365-374.

[14]

Chen G.Y., Lin Y.C., Vrijmoed L.L.P., Fong W.F.. A new isochroman from the marine endophytic fungus 1893#. Chem Nat Compds, 2006, 42: 138-141.

[15]

Chen G.Y., Lin Y.C., Wen L., Vrijmoed L.L.P., Jones E.B.G.. Two new metabolites of a marine endophytic fungus (No. 1893) from an estuarine mangrove on the South China Sea coast. Tetrahedron, 2003, 59: 4907-4909.

[16]

Cheng ZS, Tang WC, Su ZJ, Cai Y, Sun SF, Chen QJ, Wang FH, Lin YC, She ZG, Vrijmoed LLP. 2008. Identification of mangrove endophytic fungus 1403 (Fusarium proliferatum) based on morphological and molecular evidence. J Forestry Res, DOI: 10.1007/s11676-008-0030-7.

[17]

Christophersen C., Crescente O., Frisvad J.C., Gram L., Nielsen J., Nielsen P.H., Rahbæk L.. Antibacterial activity of marine-derived fungi. Mycopathologia, 1999, 143: 135-138.

[18]

Cribb A.B., Cribb J.W.. Marine fungi from Queensland-I. Papers Univ Queensland, Dept Bot, 1955, 3: 78-107.

[19]

D’souza D.T., Tiwari R., Sah A.K., Raghukumar C.. Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzym Microb Technol, 2006, 38: 504-511.

[20]

Dunn W.B., Bailey N.J.C., Johnson H.E.. Measuring the metabolome: current analytical technologies. Analyst, 2005, 130: 606-625.

[21]

Fryar S.C., Davies J., Booth W., Hodgkiss I.J.. Succession of fungi on dead and live wood in brackish water in Brunei. Mycologia, 2004, 96(2): 219-225.

[22]

Fauvel M.T., Bousquet-Melou A., Moulis C., Gleye J., Jensen S.R.. Iridoid glucosides from Avicennia germinans. Phytochem, 1995, 38: 893-894.

[23]

Gadek PA (ed). 1998. Patch deaths in tropical Queensland rainforests: association and impact of Phytophthora cinnamoni and other soil borne pathogens. Cooperative Research Centre for Torpical Rainforest Ecology and Management, Technical Report, Cairns, 99 pp.

[24]

García-Guzmán G., Dirzo R.. Patterns of leaf-pathogen infection in the understory of a Mexican rain forest: incidence, spatiotemporal variation, and mechanisms of infection. Am J Bot, 2001, 88: 634-645.

[25]

Garci-Maceira F.I., Di Pietro A., Huertas-Gonzalez M.D., Ruiz-Roldan M.C., Roncero M.I.. Molecular characterization of an endo-polygalacturonase from Fusarium oxysporum expressed during early stages of infection. Appl Envir Microbiol, 2001, 67: 2191-2196.

[26]

Garrettson-Cornell L., Simpson J.. Three new marine Phytophthora species from New South Wales. Mycotaxon, 1984, 19: 453-70.

[27]

Gilbert G.S., Mejia-Chang M., Rojas E.. Fungal diversity and plant disease in mangrove forests: salt excretion as a possible defense mechanism. Oecologia, 2002, 132: 278-285.

[28]

Gonda K.E., Jendrossek D., Molitoris H.P.. Fungal degradeation of the thermoplastic polymer poly-β-hydrooxybutyric acid (PHB) under simulated deep sea pressure. Hydrobiologia, 2000, 426: 173-183.

[29]

Gopal B., Chauhan M.. Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat Sci, 2006, 68: 338-354.

[30]

Guo L.D., Hyde K.D., Liew E.C.Y.. Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences. Molec Phylogen Evolut, 2001, 20(1): 1-13.

[31]

Hatai K., Roza D., Nakayama T.. Identification of lower fungi isolated from larvae of mangrove crab, Scylla serrata, in Indonesia. Mycoscience, 2000, 41: 565-572.

[32]

Homolka L., Vyskocil P., Pilat P.. Use of protoplasts in the improvement of filamentous fungi I. Mutagenesis of protoplasts of Oudemansiella mucida. Appl Microbiol Biotechnol, 1988, 28: 166-169.

[33]

Huang H., Lin Y., Zhou S., Verijmoed L.L.P.. Metabolites of mangrove endophytic fungus 3920 from the South China Sea. Acta Sci Nat, 2005, 44(6): 137-138.

[34]

Hyde K.D.. Fungal colonization of Rhizophora apiculata and Xylocarpus granatum poles in Kampung Kapok mangrove, Brunei. Sydowia, 1991, 43: 31-38.

[35]

Hyde K.D.. Grurinovic C., Mallett K.. Marine fungi. fungi of Australia. 1996, Canberra: ABRS/CSIRO, 39 64

[36]

Hyde K.D., Alias S.A.. Biodiversity and distribution of fungi associated with decomposing Nypa fruticans. Biodivers Conserv, 2000, 9: 393-402.

[37]

Hyde K.D., Lee S.Y.. Ecology of mangrove fungi and their role in nutrient cycling: what gaps occur in our knowledge?. Hydrobiologia, 1995, 295: 107-118.

[38]

Hyde K.D., Jones E.B.G., Leano E., Pointing S.B., Poonyth A.D., Vrijmoed L.L.P.. Role of fungi in marine ecosystems. Biodiv Conserv, 1998, 7: 1147-1161.

[39]

Isaka M., Suyarnsestakorn C., Tanticharoen M.. Aigialomycins A-E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus. J Org Chem, 2002, 67: 1561-1566.

[40]

Ito T., Nakagiri A.. Mycoflora of the rhizospheres of mangrove trees. IFO Res Com Japan, 1997, 18: 40-44.

[41]

Jiang G., Lin Y., Zhou S., Vrijmoed L.L.P., Jones E.B.G.. Studies on the secondary metabolites of mangrove fungus No. 1403 from the South China Sea. Acta Sci Nat, 2000, 39(6): 68-72.

[42]

Jones E.B.G., Abdel-Wahab M.A.. Marine fungi from the Bahamas Islands. Bot Mar, 2005, 48: 356-364.

[43]

Jones E.B.G., Alias S.A.. Hyde K.D.. Diversity of mangrove fungi. Diversity of tropical microfungi. 1997, Hong Kong: Hong Kong University Press, 71 91

[44]

Jones E.B.G., Stanley S.J., Pinruan U.. Marine endophyte sources of new chemical natural products: a review. Bot Mar, 2008, 51(3): 179-190.

[45]

Kathiresan K., Bingham B.L.. Biology of mangrove and mangrove ecosystem. Adva Mar Biol, 2001, 40: 81-251.

[46]

Kernaghan G., Sigler L., Khasa D.. Mycorrhizal and root endophytic fungi of containerized Picea glauca seedlings assessed by rDNA sequence analysis. Microb Ecol, 2003, 45: 128-136.

[47]

Kim C.F., Lee S.K.Y., Price J., Jack R.W., Turner G., Kong R.Y.C.. Cloning and expression analysis of the pcbAB-pcbCβ-lactam genes in the marine fungi Kallichroma tethys. Appl Environ Microbiol, 2003, 69: 1308-1314.

[48]

Kobayashi J., Tsuda M.. Bioactive products from Okinawan marine micro- and macro-organisms. Phytochem Rev, 2004, 3: 267-274.

[49]

Koffas M., Roberge C., Lee K., Stephanopoulos G.. Metabolic engineering. Annu Rev Biomed Eng, 1999, 01: 535-557.

[50]

Kohlmeyer J., Kohlmeyer E.. Marine mycology. The higher fungi. 1979, New York: Academic Press

[51]

Kohlmeyer J., Volkmann-Kohlmeyer B.. Biogeographic observations on Pacific marine fungi. Mycologia, 1993, 85: 337-346.

[52]

Krause S.C., Raffa K.F.. Comparison of insect, fungal, and mechanically induced defoliation of larch: effects on plant productivity and subsequent host susceptibility. Oecologia, 1992, 90: 411-416.

[53]

Krohn K., Riaz M.. Total synthesis of (+) - Xyloketal D, a secondary metabolite from the mangrove fungus Xylaria sp.. Tetrahedron Lett, 2004, 45: 293-294.

[54]

Krohn K., Steingröver K., Zsila F.. Five unique compounds: Xyloketals from mangrove fungus Xylaria sp. from the South China Sea coast. J Org Chem, 2001, 66: 6252-6.

[55]

Lee O.H.K., Williams G.A.. Spatial distribution patterns of Littoraria species in Hong Kong mangroves. Hydrobiologia, 2002, 481: 137-145.

[56]

Li L.Y., Huang X.S., Scattler I., Fu H.Z., Grabley S., Lin W.H.. Structure elucidation of a new friedelane triterpene from the mangrove plant Hibiscus tiliaceus. Magn Res Chem, 2006, 44(6): 624-628.

[57]

Li L.Y., Sattler I., Deng Z.W., Groth I., Walther G., Peschel G., Grabley S., Lin W.H.. A-seco-oleane-type triterpenes from Phomopsis sp. (strain HKI0458) isolated from the mangrove plant Hibiscus tiliaceus. Phytochem, 2008, 69(2): 511-517.

[58]

Li X., Kondo R., Sakai K.. Biodegradation of sugarcane bagasse with marine fugus Phlebia sp. MG-60. J Wood Sci, 2002, 48: 159-162.

[59]

Li X., Kondo R., Sakai K.. Studies on hypersaline-tolerant white-rot fungi IV: effects of Mn and NH4 on manganese peroxidase production and Roly R-478 decolorization by the marine isolate Phlebia sp. MG-60 under saline conditions. J Wood Sci, 2003, 49: 355-360.

[60]

Lin Y.C., Wu X.Y., Feng S., Jiang G.C., Luo J.H., Zhou S.N., Vrijmoed L.L.P., Jones E.B.G., Krohn K., Steingröver K., Zsila F.. Five unique compounds: Xyloketals from mangrove fungus Xylaria sp. from the South China Sea coast. J Org Chem, 2001, 66: 6252-6.

[61]

Lin Y.C., Zhou S.N.. Marine microorganism and its metabolites. 2003, Beijing: Chemical Industry Press, 407.

[62]

Lin Y.C., Zhou S.N.. Marine microorganism and its metabolites. 2003, Beijing: Chemical Industry Press, 426 427

[63]

Lin Y.C., Wang J., Wu X.Y., Zhou S.N., Vrijmoed L.L.P., Jones E.B.G.. A novel compound enniatin G from the mangrove fungus Halosarpheia sp. (strain 732) from the South China Sea. Aust J Chem, 2002, 55: 225-227.

[64]

Lin Y.C., Wu X.Y., Deng Z.J., Wang J., Zhou S.N., Vrijmoed L.L.P., Jones E.B.G.. The metabolites of the mangrove fungus Verruculina enalia No. 2606 from a salt lake in the Bahamas. Phytochem, 2002, 59: 469-471.

[65]

Liu A., Wu X., Xu T.. Research advances in endophytic fungi of mangrove. Chin J Appl Ecol, 2007, 18(4): 912-918.

[66]

Lively C.M., Johnson S.G., Delph L.F., Clay K.. Thinning reduces the effect of rust infection on jewelweed (Impatiens capensis). Ecology, 1995, 76: 1859-1862.

[67]

Lucero M.E., Barrow J.R., Osuna P., Reyes I.. Plant-fungal interactions in arid and semi-arid ecosystems: Large-scale impacts from microscale processes. J Arid Envir, 2006, 65: 276-284.

[68]

Macintosh D.J., Ashton E.C.. A review of mangrove biodiversity conservation and management. Centre for tropical ecosystems research. 2002, Denmark: University of Aarhus

[69]

Mackenzie S.E., Gurusamy G.S., Piórko A., Strongman D.B., Hu T., Wright J.L.C.. Isolation of sterols from marine fungus Corollosprora iacera. Can J Microbiol, 2004, 50: 1069-1072.

[70]

Mapelli V, Olsson L, Nielsen J. 2008. Metabolic footprinting in microbiology: methods and applications in functional genomics and biotechnology. DOI: 10.1016/j.tibtech.2008.05.008.

[71]

Maria G.L., Sridhar K.R.. Endophytic fungal assemblage of two halophytes from west coast mangrove habitats, India. Czech Mycol, 2003, 55(2–4): 241-251.

[72]

Martín J.F.. Alpha-aminoadipyl-cysteinyl-valine synthetases in beta-lactam producing organisms. From Abrahams’s discoveries to novel concepts of non-ribosomal peptide synthesis. J Antibiot, 2000, 53: 1008-10021.

[73]

Masuma R., Yamaguchi Y., Noumi M., Omura S., Namikoshi M.. Effect of sea water concentration on hyphal growth and antimicrobial metabolite production in marine fungi. Mycoscience, 2001, 42: 455-459.

[74]

Maxwell G.S.. Pathogenicity and salinity tolerance of Phytophthora sp. isolated from Avicennia resinifera (Forst F.)-some initial investigations. Tane, 1968, 14: 13-23.

[75]

Mayer A.M.S., Hamann M.T.. Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Mar Biotechnol, 2004, 6: 37-52.

[76]

Mckee K.L.. Interspecific variation in growth, biomass partitioning, and defensive characteristics of neotropical mangrove seedlings: response to light and nutrient availability. Am J Bot, 1995, 82: 299-307.

[77]

Müller C.B., Krauss J.. Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol, 2005, 8: 450-456.

[78]

Newell S.Y.. Carroll G.C., Wicklow D.T.. Estimating fungal biomass and productivity in decomposing litter. The fungal community. 1992, New York: Marcel Dekker, Inc, 521 561

[79]

Newell S.Y.. Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. J Exper Mar Biol Ecol, 1996, 200: 187-206.

[80]

Newell S.Y., Fell J.W.. Ergosterol content of living and submerged, decaying leaves and twigs of red mangrove. Can J Microbiol, 1992, 38: 979-982.

[81]

Newell S.Y., Miller J.D., Fell J.W.. Rapid and pervasive occupation of fallen mangrove leaves by a marine zoosporic fungus. Appl Envir Microbiol, 1987, 53(10): 2464-2469.

[82]

Nair M.S.R., Carey S.T.. Metabolites of pyrenomycetes XIII: Structure of (+) hypothemycin, an. antibiotic macrolide from Hypomyces trichothecoides. Tetrahedron Lett., 1980, 21: 2011-2012.

[83]

Niture S.K., Kumar A.R., Pant A.. Role of glucose in production and repression of polygalacturonase and pectatelynase from phytopathogenic fungus iFusarium moniliforme NCIM 1276. World J Microbiol Biotechnol, 2006, 22: 893-899.

[84]

Niture S.K., Pant A.. Purification and biochemical characterization of polygalacturonase II produced in semi-solid medium by a strain of Fusarium moniliforme. Microbiol Res, 2004, 159: 305-314.

[85]

Pan J.H., Jones E.B.G., She Z.G., Pang J.Y., Lin Y.C.. Review of bioactive compounds from fungi in the South China Sea. Bot Mar, 2008, 51(3): 179-190.

[86]

Parekh S., Vinci V.A., Strobel R.J.. Improvement of microbial strains and fermentation processs. Appl Microbiol Biotechnol, 2000, 54: 287-301.

[87]

Pegg K.G., Gillespie N.C., Forsberg L.I.. Phytophthora spp. associated with mangrove death in central coastal Queensland. Australas Pl Pathol, 1980, 9: 6-7.

[88]

Poch G.K., Gloer J.B.. Helicascolides A and B: New lactones from the marine fungus Helicascus kanaloanus. J Nat Prod, 1989, 52: 257-260.

[89]

Poch G.K., Gloer J.B.. Auranticins A and B: Two depsidones from a mangrove isolate of the fungus Preussia aurantiaca. J Nat Prod, 1991, 54: 213-217.

[90]

Polizeli M.L.T.M., Rizzatti A.C.S., Monti R., Terenzi H.F., Jorge J.A., Amorim D.S.. Xylanases form fungi: properties and Industrial applications. Appl Microbiol Biotechnol, 2005, 67: 577-591.

[91]

Robertson A.I.. Decomposition of mangrove leaf litter in tropical Australia. J Exp Mar Biol Ecol, 1988, 116: 235-247.

[92]

Rodriguez R.J., Redman R.S., Henson J.M.. The role of fungi symbioses in the adaptation of plants to high stress environments. Mitig adap strat Glob Change, 2004, 9: 261-272.

[93]

Raghukumar C., Muraleedharan U., Gaud V.R., Mishra R.. Xylanases of marine fungi of potentiall use of bioleaching of paper pulp. J Ind Microbiol Biotechnol, 2004, 31: 433-441.

[94]

Roza D., Hatai K.. Pathogenicity of fungi isolated from the larvae of the mangrove crab, Scylla serrata, in Indonesia. Mycoscience, 1999, 40: 427-431.

[95]

Sadaba R.B., Vrijmoed L.L.P., Jones E.B.G., Hodgkiss I.J.. Observations on vertical distribution of fungi associated with standing senescent Acanthus ilicifolius stems at Mai Po mangrove, Hong Kong. Hydrobiologia, 1995, 295: 119-126.

[96]

Sallenave-Namont C., Pouchus Y.F., Robiou du Pont T., Lassus P., Verbist J.F.. Toxigenic saprophytic fungi in marine shellfish farming areas. Mycopathologia, 2000, 149: 21-25.

[97]

Sariaslani F.S.. Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Annu Rev Microbiol, 2007, 61: 51-69.

[98]

Sarma V.V., Hyde K.D.. A review on frequently occurring fungi in mangrove. Fung Divers, 2001, 8: 1-34.

[99]

Sarma V.V., Hyde K.D., Vittal B.P.R.. Frequency of occurrence of mangrove fungi from the east coast of India. Hydrobiologia, 2001, 455: 41-53.

[100]

Schmit J.P., Shearer C.A.. A checklist of mangrove-associated fungi, their geography and known host plants. Mycotaxon, 2003, 80: 423-477.

[101]

Schmit J.P., Shearer C.A.. Geographic and host distribution of lignicolous mangrove microfungi. Bot Mar, 2004, 47: 496-500.

[102]

Sengupta A., Chaudhuri S.. Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza, 2002, 12: 169-174.

[103]

Shearer C.A., Descals E., Kohlmeyer B., Kohlmeyer J., Marvanová L., Padgett D., Porter D., Raja H.A., Schmit J.P., Thorton H.A., Voglymayr H.. Fuangal diversity in aquatic habitats. Biodivers Conserv, 2007, 16: 49-67.

[104]

Song X.H., Liu X.H., Lin Y.C.. Metabolites of mangrove fungus No. K23 and interaction of carboline with DNA. J Trop Oceangr, 2004, 23(3): 66-71.

[105]

Sridhar K.R.. Mangrove fungi in India. Curr Sci, 2004, 86(12): 1586-1587.

[106]

Strobel G.A., Daisy B., Castillo U., Harper J.. Natural products from endophytic microorganisms. J Nat Prod, 2004, 67: 257-268.

[107]

Suryanarayanan T.S., Kumaresan V., Johnson J.A.. Foliar fungal endophytes from two species of the mangrove Rhizophora. Microbiol, 1998, 44: 1003-1006.

[108]

Tattar T.A., Klekowski E.J., Stern A.I.. Dieback and mortality in red mangrove, Rhizophora mangle L. in southwest Puerto Rico. Arbor J, 1994, 18: 419-429.

[109]

ten Have A., Breuil W.O., Wubben J.P., Visser J., van Kan J.A.. Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues. Fungal Genet Biol, 2001, 33: 97-105.

[110]

Vazquez P., Holguin G., Puente M.E., Lopez-Cortes A., Bashan Y.. Phosphate -solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils, 2000, 30: 460-468.

[111]

Venkateswara Sarma V., Hyde K.D., Vittal B.P.R.. Frequency of occurrence of mangrove fungi from the east coast of India. Hydobiologia, 2001, 455: 41-53.

[112]

Vrijmoed L.L.P., Jones E.B.G., Hyde K.D.. Observations on subtropical mangrove fungi in the Pearl River Estuary. Acta Sci Nat, 1991, 33(1): 78-85.

[113]

Wang G., Li H., Sun W.. Primary study on arbuscular mycorrhizas of mangrove in Qinzhou Bay. Guihaia, 2003, 23(5): 445-449.

[114]

Wang G.Y.. Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol, 2006, 33(7): 545-51.

[115]

Wang S.Y., Mao W.W., She Z.G., Li C.R., Yang D.Q., Lin Y.C., Fu L.W.. Synthesis and biological evaluation of 12 allenic aromatic ethers. Bioorg Medic Chem Lett, 2007, 17: 2785-2788.

[116]

Weishampel P.A., Bedford B.L.. Wetland dicots and monocots differ in colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza, 2006, 16(7): 495-502.

[117]

Wu R.Y.. Studies on the microbial ecology of the Tansui Estuary. Bot Bull Acad Sin, 1993, 34: 13-30.

[118]

Wu X.Y., Liu X.H., Jiang G.C., Lin Y.C., Willy C., Vrijmoed L.L.P.. Xyloketal G, a novel metabolite from the mangrove fungus Xylaria sp. 2508. Chem Nat Comps., 2005, 41(1): 27-29.

[119]

Xia X.K., Huang H.R., She Z.G., Shao C.L., Liu F., Cai X.L., Vrijmoed L.L.P., Lin Y.C.. 1H and 13C NMR assignments for five anthraquinones from the mangrove endophytic fungus Halorosellinia sp. (No. 1403). Magn Reson Chem, 2007, 45: 1006-1009.

[120]

Xiao Y., Zheng Z., Huang Y., Xu Q., Su W., Song S.. Nematicidal and brine shrimp lethality of secondary metabolites from marine-drived fungi. Journal of Xiamen University (Nature Science), 2005, 44(6): 847-850.

[121]

Xin L., Ryuichiro K., Kokki S.. Biodegradation of sugarcane bagasse with marine fugus phlebia sp. MG-60. J Wood Sci, 2002, 48: 159-162.

[122]

Xin L., Ryuichiro K., Kokki S.. Studies on hypersaline-tolerant white-rot fungi IV: effects of Mn and NH4 on manganese peroxidase production and Roly R-478 decolorization by the marine isolate phlebia sp. MG-60 under saline conditions. J Wood Sci, 2003, 49: 355-360.

[123]

Xu M.J., Gessner G., Groth I., Lange C., Christner A., Bruhn T., Deng Z.W., Li X., Heinemann S.H., Grabley S., Bringmann G., Sattler I., Lin W.H.. Shearing D-K, new indole triterpenoids from an endophytic Penicillium sp. (strain HKI0459) with blocking activity on large-conductance calcium -activated potassium channels. Tetrahedron, 2007, 63: 435-444.

[124]

Xu Q., Huang Y., Zheng Z., Song S.. Purification, elucidation and activities study of cytosporone B. Journal of Xiamen University (Natural Science), 2005, 44(3): 425-428.

[125]

Yang L., Huang Y., Zheng Z., Song S., Su W., Sheng Y.. The population fluctuation and bioactivity of endophytic fungi from mangrove plants in different seasons. Journal of Xiamen University (Natural Science), 2006, 45(sup.): 95-99.

[126]

You J., Mao W., Zhou S., Wang J., Lin Y., Wu S.. Fermentation conditions and characterization of endophytic fungus #732 producting novel enniatin G from South China Sea. Act Sci Nat, 2006, 45(4): 75-78.

[127]

Yu J.H., Keller N.. Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol, 2005, 43: 437-58.

[128]

Zhou Z., Huang Z.. Study on the species and ecological character of mangrove pathogenic fungi in Guangxi. Guihaia, 2001, 21(2): 157-162.

[129]

Zhu F., Lin Y.C.. Marinamide, a novel alkaloid and its methyl ester produced by the application of mixed fermentation technique to two mangrove endophytic fungi from the South China Sea. Chin Sci Bull, 2006, 51(12): 1426-1430.

[130]

Zhu F., Lin Y.C., Wang J., Zhou S.N., Vrijmoed L.L.P.. Methabolites of mangrove endophytic fungus #2492 from the South China Sea. Mar Sci Bull, 2006, 25(3): 34-37.

[131]

Zeng X.B., Wang H.Y., He L.Y., Lin Y.C., Li Z.T.. Medium optimization of carbon and nitrogen sources for the production of eucalyptene A and xyloketal A from Xylaria sp. 2508 using response surface methodology. Proc Biochem, 2005, 41: 293-298.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/