Aboveground nutrient components of Eucalyptus camaldulensis and E. grandis in semiarid Brazil under the nature and the mycorrhizal inoculation conditions

Marcela C. Pagano , Antonio F. Bellote , Maria R. Scotti

Journal of Forestry Research ›› 2009, Vol. 20 ›› Issue (1)

PDF
Journal of Forestry Research ›› 2009, Vol. 20 ›› Issue (1) DOI: 10.1007/s11676-009-0003-5
Research Paper

Aboveground nutrient components of Eucalyptus camaldulensis and E. grandis in semiarid Brazil under the nature and the mycorrhizal inoculation conditions

Author information +
History +
PDF

Abstract

A study was conducted to evaluate the aboveground biomass, nutrient content and the percentages of mycorrhizal colonization in Eucalyptus camaldulensis and Eucalyptus grandis plantations in the semiarid region (15° 09′ S 43° 49′ W) in the north of the State of Minas Gerais in Brazil. Results show that the total above-ground biomass (dry matter) was 33.6 Mg·ha−1 for E. camaldulensis and 53.1 Mg·ha−1 for E. grandis. The biomass of the stem wood, leaves, branches, and stem bark for E. camaldulensis accounted for 64.4%, 19.6%, 15.4%, and 0.6% of the total biomass, respectively (Table 2); meanwhile a similar partition of the total above-ground biomass was also found for E. grandis. The dry matter of leaves and branches of E. camaldulensis accounted for 35% of total biomass, and the contents of N, P, K, Ca, Mg, and S in leaves and branches accounted for 15.5%, 0.7%, 12.3%, 22.6%, 1.9%, and 1.4% of those in total above-ground biomass, respectively. In the trunk (bark and wood), nutrient accumulation in general was lower. Nutrient content of E. grandis presented little variation compared with that of E. camaldulensis. Wood localized in superior parts of trunk presented a higher concentration of P and bark contained significant amounts of nutrients, especially in E. grandis. This indicated that leaving vegetal waste is of importance on the site in reducing the loss of tree productivity in this semi-arid region. The two species showed mycotrophy.

Keywords

Eucalyptus / biomass / nutrient components / semi-arid region / mycorrhizal symbioses / Brazil

Cite this article

Download citation ▾
Marcela C. Pagano, Antonio F. Bellote, Maria R. Scotti. Aboveground nutrient components of Eucalyptus camaldulensis and E. grandis in semiarid Brazil under the nature and the mycorrhizal inoculation conditions. Journal of Forestry Research, 2009, 20(1): DOI:10.1007/s11676-009-0003-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adjoud-Sadadou D., Halli-Hargas R.. Occurrence arbuscular mycorrhiza on aged Eucalyptus. Mycorrhiza, 2000, 9: 287-290.

[2]

Almeida A.C., Soares J.V., Landsberg J.J., Rezende G.D.. Growth and water balance of Eucalyptus grandis hybrid plantations in Brazil during a rotation for pulp production. For Ecol Manage, 2007, 251: 10-21.

[3]

Arriagada C.A., Herrera M.A., Ocampo J.A.. Beneficial effect of saprobe and arbuscular mycorrhizal fungi on growth of Eucalyptus globulus co-cultured with Glycine max in soil contaminated with heavy metals. Journal of Environmental Management, 2007, 84: 93-99.

[4]

Bellote A.F.J.. Suprimento de nutrientes minerais e crescimento de plantações adubadas de Eucalyptus grandis nos cerrados do Estado de São Paulo. Doctoral Thesis. 1990, Fraiburg, Germany: University de Fraiburg

[5]

Bernardo A.L., Reis M.G.F., Reis G.G., Harrison R.B., Firme D.J.. Effect of spacing on growth and biomass distribution in Eucalyptus camaldulensis, E. pellita and E. urophylla plantations in southeastern Brazil. For Ecol Manage, 1998, 104: 1-13.

[6]

Boerner R.E.J.. Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility. Journal of Applied Ecology, 1984, 21: 1029-1040.

[7]

Brundrett M.. Diversity and classification of mycorrhizal associations. Biological Reviews, 2004, 79: 473-495.

[8]

Brundrett M., Bougher N., Dell B., Grove G., Malajczuk N.. Working with Mycorrhizas in Forestry and Agriculture. 1996, Canberra: ACIAR

[9]

Caldeira M.V.W., Schumacher M.V., Spathelf P.. Quantification of nutrient content in above-ground biomass of young Acacia mearnsii De Wild., provenance Bodalla. Annals of Forest Science, 2002, 59: 833-838.

[10]

Campinhos E. Jr.. Sustainable plantations of high-yield Eucalyptus trees for production of fiber: the Aracruz case. New Forests, 1999, 17: 129-143.

[11]

Cardoso I.M., Kuyper T.W.. Mycorrhizas and tropical soil fertility. Agriculture Ecosystems & Environment, 2006, 116: 72-84.

[12]

Carvalho P.E.R.. Espécies arbóreas brasileiras. 2003, Brasília, DF: Embrapa Informação Tecnológica, 1039.

[13]

Chen Y.L., Kang L.H., Dell B.. Inoculation of Eucalyptus urophylla with spores of Scleroderma in a nursery in south China: Comparison of field soil and potting mix. For Ecol Manage, 2006, 222: 439-449.

[14]

Corbeels M., McMurtrie R.E., Pepper D.A., Mendham D.S., Grove T.S., O’Connell A.M.. Long-term changes in productivity of eucalypt plantations under different harvest residue and nitrogen management practices: A modelling analysis. For Ecol Manage, 2005, 217(1): 1-18.

[15]

Córdoba A.S., Mendonça M., Stürmer S.L., Rygiewicz P.T.. Diversity of arbuscular mycorrhizal fungi along a sand dune stabilization gradient: A case study at Praia da Joaquina, Ilha de Santa Catarina, South Brazil. Mycoscience, 2001, 42: 379-387.

[16]

Coelho F.B., Borges A.C., Neves J.C.L., Barros N.F., Muchovej R.M.. Caracterização e incidência de fungos micorrízicos em povoamentos de Eucalyptus grandis e Eucalyptus saligna, nos municípios de Botucatu, São José dos Campos e São Miguel Arcanjo, São Paulo. R. Árvore, 1997, 21: 563-573.

[17]

Dell B., Malajaczuk N., Grove T.S.. Nutrient disorders in plantation eucalypts. 1995, Canberra: Australian Centre for International Agricultural Research, 104.

[18]

Drechsel P., Zech W.. Foliar nutrient levels of broad-leaved tropical trees: a tabular review. Plant Soil, 1991, 131: 29-46.

[19]

Duarte N.F., Bucek E.U., Karam D., Sa’ N., Scotti M.R.M.. 551 Mixed field plantation of native and exotic species in 552 semi-arid Brazil. Aust J Bot, 2006, 54: 755-764.

[20]

EMBRAPA. Empresa brasileira de Pesquisa Agropecuária. 1979. Manual de Análises Químicas de solos, plantas, e fertilizantes. Brasília, DF, Brazil.

[21]

Faria G.E., Barros N.F., Novais R.F., Lima J.C., Teixeira J.L.. Produção e estado nutricional de povoamentos de Eucalyptus grandis, em segunda rotação, em resposta à adubação potássica. R. Árvore, 2002, 26: 577-584.

[22]

Fisher R.F., Binkley D.. Ecology and management of forest soils. 2000, New York: Wiley

[23]

Gardner H., Malajczuk N.. Recolonisation of rehabilitated bauxite mine sites in Western Australia by mycorrhizal fungi. For Ecol Manage, 1988, 24: 27-42.

[24]

George M., Varghese G.. Nutrient cycling in Eucalyptus globulus plantation. I Organic matter production, nutrients accumulation in standing crop and nutrients removal through harvest. Indian Forestry, 1990, 116: 42-48.

[25]

Gomes S.P., Trufem S.F.B.. Fungos micorrízicos arbusculares (Glomales, Zygomycota) na Ilha dos Eucaliptos, Represa do Guarapiranga, São Paulo, SP. Acta Bot. Brasilica, 1998, 12: 393-401.

[26]

Gonçalves J.L.M., Stape J.L., Laclau J.-P., Smethurst P., Gava J.L.. Silvicultural effects on the productivity and wood quality of eucalypt plantations. For. Ecol. Manage., 2004, 193: 45-61.

[27]

Gonçalves J.L.M.. Root system adsorption of Eucalyptus grandis under different edaphic conditions. Silvicultura, 1995, 61: 8-10.

[28]

Grazziotti P.H., Barros N.F., Borges A.C., Neves J.C., Fonseca S.. Variação sazonal da colonização de raízes de clones de híbridos de eucalipto por fungos micorrízicos no estado do Espírito Santo. Rev Bras Ciênc Solo, 1998, 22: 613-619.

[29]

Harrison R.B., Reis G.G., Reis M.D.G.F., Bernardo A.L., Firme D.J.. Effect of spacing and age on nitrogen and phosphorus distribution in biomass of Eucalyptus camaldulensis, Eucalyptus pellita and Eucalyptus urophylla plantations in southeastern Brazil. For Ecol Manage, 2000, 133: 167-177.

[30]

Hopmans P., Stewart H.T.L., Flinn D.W.. Impacts of harvesting on nutrients in a eucalypt ecosystem in southeastern Australia. For Ecol Manage, 1993, 59: 29-51.

[31]

Högberg M.N., Högberg P.. Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol., 2002, 154: 791-795.

[32]

Hunter I.. Above ground biomass and nutrient uptake of three tree species (Eucalyptus camaldulensis, Eucalyptus grandis and Dalbergia sissoo) as affected by irrigation and fertiliser, at 3 years of age, in southern India. For Ecol Manage, 2001, 144: 189-199.

[33]

Jeffries P., Gianinazzi S., Perotto S., Turnau K., Barea J.M.. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 2003, 37: 1-16.

[34]

Kramer P.J., Koslowski T.T.. Physiology of woody plants. 1979, New York: Academic Press

[35]

Laclau J.P., Ranger J., Deleporte P., Nouvellon Y., Saint-André L., Marlet S., Bouillet J.. Nutrient cycling in a clonal stand of Eucalyptus and an adjacent savanna ecosystem in Congo: 3. Input-output budgets and consequences for the sustainability of the plantations. For Ecol Manage, 2005, 210(1–3): 375-391.

[36]

Lapyeyrie F.F., Chilvers G.A.. An endomycorrhiza-ectomycorrhiza succession associated with enhanced growth of Eucalyptus dumosa seedlings planted in a calcareous soil. New Phytol., 1985, 100: 93-104.

[37]

Lemma B., Kleja D.B., Nilsson I., Olsson M.. Soil carbon sequestration under different exotic tree species in the southwestern highlands of Ethiopia. Geoderma, 2006, 136: 886-898.

[38]

Malajczuk N., Linderman R.G., Kough J., Trappe J.M.. Presence of vesicular-arbuscular mycorrhizae in Eucalyptus spp. and Acacia sp. and their absence in Banksia sp. after inoculation with Glomus fasciculatus. New Phytologist, 1981, 87: 567-572.

[39]

Malajczuk N., Molina R., Trappe J.M.. Ectomycorrhiza formation in Eucalyptus. I. Pure culture synthesis, host specificity and mycorrhizal compatibility with Pinus radiata. New Phytologist, 1982, 91: 467-482.

[40]

Marcar N.E., Crawford D.F., Leppert P.M., Jovanovic T., Floyd R., Farrow R.. Trees for Saltland: A Guide to Selecting Native Species for Australia. 1995, Melbourne: CSIRO Publications

[41]

Marques Júnior O.G., Andrade H.B., Ramalho M.A.P.. Avaliação de procedências de Eucalyptus cloeziana F. Muell e estimação de parâmetros genéticos e fenótipos na região noroeste do estado de Minas Gerais. Cerne, 1996, 2: 12-19.

[42]

Marx D.H., Cordell C.E., Maul S.B., Ruehle J.L.. Ectomycorrhizal development on pine by Pisolithus tinctorius in bare-root and container seedling nurseries. New Forests, 1989, 3: 57-66.

[43]

Mason P.A., Ingleby K., Munro R.C., Wilson J., Ibrahim K.. The effect of reduced phosphorus concentration on mycorrhizal development and growth of Eucalyptus globulus Labill. seedlings inoculated with 10 different fungi. For. Ecol. Manage., 2000, 128: 249-258.

[44]

Midgley S.J., Eldridge K.G., Doran J.C.. Genetic resources of Eucalyptus camaldulensis. Common For Rev, 1989, 68: 295-308.

[45]

McGonigle T.P., Miller M.H., Evans D.G., Fairchild G.L., Swan J.A.. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorhizal fungi. New Phyto, 1990, 115: 495-501.

[46]

Molina R., Massicote H., Trappe J.M.. Allen M.J.. Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. Mycorrhizal Functioning and Integrative Plant-Fungal Process. 1992, London: Chapman & Hall, 357 423

[47]

Nelson D.W., Sommer L.E.. By Page A. L.. Total carbon, organic carbon, and organic matter. Methods of soil analysis. Part 2, Chemical and microbiological properties. 1982, Wisconsin: Amer. Soc. Agron., Inc., Soil Sci. Soc., Inc. Madison, 539 579

[48]

Pagano M.C.. Characterization of Glomalean mycorrhizal fungi and its benefits on plant growth in a semi-arid region of Minas Gerais (Jaíba Project), Brazil. PhD thesis. 2007, Belo Horizonte, Brazil: Federal University of Minas Gerais, 163.

[49]

Pagano M.C., Cabello M.N., Bellote A.F., Sa N.M., Scotti M.R.. Intercropping system of tropical leguminous species and Eucalyptus camaldulensis, inoculated with rhizobia and/or mycorrhizal fungi in semiarid Brazil. Agroforest Syst., 2008, 74: 231-242.

[50]

Pampolina N.M., Dell B., Malalczuk N.. Dynamics of ectomycorrhizal fungi in a Eucalyptus globulus plantation: effect of phosphorus fertilization. For Ecol Manage, 2002, 158: 291-304.

[51]

Phillips J.M., Hayman D.S.. Improved procedures for clearing roots and staining parasitic and vesicular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc, 1970, 55: 158-161.

[52]

Pereira A.R., Andrade D.C., Barros N.F., Fonseca A.G., Leal P.G.L., Lucia M.A.D., Gomes J.M.. Produção de biomassa e acumulação de nutrientes em florestas de ciclos curtos. 1984, Minas Gerais, Brazil: Publication of Sociedade de Investigações Florestais. Federal University of Viçosa

[53]

Poggiani F., Couto H.T.Z., Suiter R.W.. Biomass and nutrient estimates in short rotation intensively cultured plantations of Eucalyptus grandis. J. IPEF, 1983, 23: 37-42.

[54]

Prado D.E.. Leal I.R., Tabarelli M., da Silva J. M. C.. As Caatingas de América do Sul. Seção I. Padrões de diversidade e distribuição das espécies em escala regional. Ecologia e Conservação da Caatinga. 2003, Recife: Edit. Universitária, 1 74

[55]

Read D.J., Perez-Moreno J.. Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance?. New Phytol, 2003, 157: 475-492.

[56]

Rillig M.C.. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol. Letters, 2004, 7: 740-754.

[57]

Santos V.L., Muchovej R.M., Borges A.C., Neves J.C.L., Kasuya M.C.M.. Vesicular-arbuscular-ectomycorrhiza succession in seedlings of Eucalyptus spp. Braz. J. Microbiol., 2001, 32: 81-86.

[58]

Sarruge J.R., Haag H.P.. Análises químicas em plantas. 1974, Piracicaba, São Paulo, Brazil: Ed. Escola Superior de Agricultura “Luiz de Queiroz”

[59]

Schumacher M.V., Poggiani F.. Produção de biomassa e remoção de nutrientes em povoamentos de Eucalyptus camaldulensis Dehnh, Eucalyptus grandis Hill ex Maiden E Eucalyptus torelliana F.Muell, plantados em Anhembí, SP. Sci Flor, 1993, 3: 21-34.

[60]

Shimoyama V.R.S.. Variações da densidade básica e características anatômicas e químicas da madeira de Eucalyptus spp.. M. S. Thesis. 1990, Piracicaba, Brazil: Escola Superior de Agricultura “Luiz de Queiroz”

[61]

Sieverding E.. Vesicular-arbuscular mycorrhiza management in tropical agrosystems. 1991, Eschborn: Deutsche Gesellschaft für Technische Zusammenarbeit

[62]

Silveira L.V.A., Luca E.F., Silveira L.V.A., Luz H.F.. Dry matter, macronutrients concentration and content in Eucalyptus seedlings according to the age. Scientia Florestalis, 2003, 64: 136-149.

[63]

Smith S.E., Read D.J.. Mycorrhizal Symbiosis. 1997, London, UK: Academic Press, Inc.

[64]

Standish R.J., Stokes B.A., Tibbett M., Hobbs R.J.. Seedling response to phosphate addition and inoculation with arbuscular mycorrhizas and the implications for old-field restoration in Western Australia. Env Exp Bot, 2007, 61: 58-65.

[65]

Tandon V.N., Pande M.C., Singh R.. Biomass estimation and distribution of nutrients in five different aged Eucalyptus grandis plantations ecosystems in Kerala state. The Indian Forester, 1988, 114: 184-199.

[66]

Timmer V.R., Morrow L.D.. Stone E.L.. Predicting fertilizer growth response and nutrient status of jack pine by foliar diagnosis. Forest Soil and Treatment Impacts. 1984, Knoxville: Univ. of Tennessee

[67]

Thomson B.D., Hardy G., Malajczuk N., Grove T.S.. The survival and development of inoculant ectomycorrhizal fungi on roots of outplanted Eucalyptus globulus Labill. Plant Soil, 1996, 178: 247-253.

[68]

Van der Driessche R.. Prediction of mineral status of trees by foliar analysis. The Botanical Review, 1984, 40: 347-394.

[69]

Vezzani F.M.. EsAspectos nutricionais de povoamentos puros e mistos de Eucalyptus saligna (Smith) e Acacia mearsnii (De Wild.). M.S. Thesis. 1997, Porto Alegre, RS, Brazil: Federal University of Rio Grande do Sul

[70]

Young HE, Carpenter PN. 1976. Sampling variation of nutrient element content within and between on trees of the same species. In: Oslo Biomass Studies. Oslo, Proceedings.

[71]

Zambolim L., Barros N.F.. Constatação de micorriza vesicular-arbuscular em Eucalyptus spp. na região de Viçosa, MG. Rev Árvore, 1982, 6: 95-97.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/