Phylogenetic relationships of 18 passerines based on Adenylate Kinase Intron 5 sequences

Hui-yan Guo , Hui-xin Yu , Su-ying Bai , Yu-kun Ma

Journal of Forestry Research ›› 2008, Vol. 19 ›› Issue (3) : 239 -244.

PDF
Journal of Forestry Research ›› 2008, Vol. 19 ›› Issue (3) : 239 -244. DOI: 10.1007/s11676-008-0041-4
Research Paper

Phylogenetic relationships of 18 passerines based on Adenylate Kinase Intron 5 sequences

Author information +
History +
PDF

Abstract

The 18 species of bird studied originally are known to belong to muscicapids, robins and sylviids of passerines, but some disputations are always present in their classification systems. In this experiment, phylogenetic relationships of 18 species of passerines were studied using Adenylate Kinase Intron 5 (AK5) sequences and DNA techniques. Through sequences analysis in comparison with each other, phylogenetic tree figures of 18 species of passerines were constructed using Neighbor-Joining (NJ) and Maximum-Parsimony (MP) methods. The results showed that sylviids should be listed as an independent family, while robins and flycatchers should be listed into Muscicapidae. Since the phylogenetic relationships between long-tailed tits and old world warblers are closer than that between long-tailed tits and parids, the long-tailed tits should be independent of paridae and be categorized into aegithalidae. Muscicapidae and Paridae are known to be two monophylitic families, but Sylviidae is not a monophyletic group. AK5 sequences had better efficacy in resolving close relationships of interspecies among intrageneric groups.

Keywords

molecular phylogeny / Adenylate Kinase Intron 5 / passeriformes / monophyly

Cite this article

Download citation ▾
Hui-yan Guo, Hui-xin Yu, Su-ying Bai, Yu-kun Ma. Phylogenetic relationships of 18 passerines based on Adenylate Kinase Intron 5 sequences. Journal of Forestry Research, 2008, 19(3): 239-244 DOI:10.1007/s11676-008-0041-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alstrom P., Ericson P.G.P., Olsson U., Sundberg P. Phylogeny and classification of theavian superfamily Sylvioidea Molecular Phylogenetics and Evolution, 2006, 38: 381-397.

[2]

Barker F.K., Barrowclough G.F., Groth J.G. A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data Proc R Soc Lond B, 2002, 269: 295-308.

[3]

Breathnach R., Mandel J.L., Chambon P. Ovalbumin gene is split in chicken DNA Nature, 1977, 170: 314-319.

[4]

Brown W.M., Prager E.M., Wang A., Wilson A.C. Mitochondrial DNA sequences of primates: tempo and mode of evolution J Mol Evol, 1982, 18: 225-239.

[5]

Chang J., Ma J., Lu C. Ornithology, 1992 Harbin: Northeast Forestry University Press 55-68.

[6]

Edwards S.V., Arctander P., Wilson A.C. Mitochondrial resolution of a deep branch in the genealogical tree for perching birds Proc R Soc Lond B Biol Sci, 1991, 243: 99-107.

[7]

Friesen V.L., Congdon B.C., Walsh H.E., Birt T.P. Intron variation in Marbled Murrelets detected using analyses of single-stranded conformational polymorphisms Molecular Ecology, 1997, 6: 1047-1058.

[8]

Gill F.B., Slikas B. Patterns of mitochondrial DNA divergence in North American Crested Titmice The Condor, 1992, 94: 20-28.

[9]

Griffiths C.S., Barrowclough G.F., Groth J.G., Mertz L. Phylogeny of the Falconidae (Aves): a comparison of the efficacy of morphological, mitochondrial, and nuclear data Molecular Phylogenetics and Evolution, 2004, 32(1): 101-109.

[10]

Hall B.G. Phylogenetic trees made easy: a how-to manual for molecular biologists, 2001 Sunderland: Sinuaer Associates 1-45.

[11]

Heslewood M.M., Elphinstone M.S., Tidemann S.C., Baverstock P.R. Myoglobin intron variation in the Gouldian Finch Erythrura gouldiae assessed by temperature gradient gel electrophoresis Electrophoresis, 1998, 19: 142-151.

[12]

Howard R., Moore A. Complete Checklist of the Birds of the World, 2003 3rd ed. London: Christopher Helm 122-146.

[13]

Keller E.B., Noon W.A. Intron splicing: a conserved internal control signal in introns of Drosophila pre-mRNAs Nucleic Acids Res., 1985, 13: 4971-4981.

[14]

Li Q., Li S., Tian C. Molecular evolution and variability in mitochondrial DNA in 10 species of passeriformes Acta Zoologica Sinica, 2002, 48(5): 625-632.

[15]

Ma Y., Niu L., Guo H. The utilities of DNA in avian molecular phylogeny Hereditas, 2006, 28(1): 97-104.

[16]

Miyata T., Hayashida H., Kikuno R., Hasegawa M., Kobayashi M., Koike K. Molecular clock of silent substitution: at least a six-fold preponder ance of silent changes in mitochondrial genes over those in nuclear genes J Mol Evol, 1982, 19: 28-35.

[17]

Moritz C., Dowling T.E., Brown W.M. Evolution of animal mtDNA: relevance for population biology and systematics Annu Rev Ecol Syst, 1987, 18: 269-292.

[18]

Mount S.M. A catalogue of spice junction sequences Nucleic Acids Res., 1982, 10: 459

[19]

Mount S.M., Burks C., Hertz G., Stormo G.D., White O., Fields C. Splicing signals in Drosophila intron size information content and consensus sequences Nucleic Acids Res., 1992, 20: 4255-4262.

[20]

Nei M., Kumar S., Lv B.Z., Zhong Y., Gao l. P. Molecular evolution and phylogenetics, 2002 Beijing: Higher Education Press 45-56.

[21]

Omland K.E., Lanyon S.M., Fritz S.J. A molecular phylogeny of the New World orioles(Icterus): the importance of dense taxon sampling Molecular Phylogenetics and Evolution, 1999, 12(2): 224-239.

[22]

Rannala B., Huelsenbeck J.P., Yang Z.H., Nielson R. Taxon sampling and the accuracy of large phylogenies Syst Biol, 1998, 47(4): 702-710.

[23]

Russello M.A., Amato G. A molecular phylogeny of Amazona: implications for neotropical parrot biogeography, taxonomy, and conservation Molecular Phylogenetics and Evolution, 2004, 30: 421-437.

[24]

Shapiro L.H., Dumbacher J.P. Adenylate kinase intron 5: A new nuclear locus for avian systematics Auk, 2001, 118(1): 248-255.

[25]

Sheldon F.H., Gill F.B. A reconsideration of songbird phylogeny, with emphasis on the evolution of titmice and their sylvioid relatives Syst. Biol., 1996, 45(4): 473-495.

[26]

Sibley C.G., Ahlquist J.E. Phylogeny and classification of birds, 1990 New Haven, Connecticut: Yale Univ. Press

[27]

Slade R.W., Moritz C., Heideman A. Multiple nuclear gene phylogenies: Application to pinnipeds and comparison with a mitochondrial DNA gene phylogeny Mol Biol Evol, 1994, 11: 341-356.

[28]

Spicer G.S., Dunipace L. Molecular phylogeny of songbirds (Passeriformes) inferred from mitochondrial 16S ribosomal RNA gene sequences Molecular Phylogenetics and Evolution, 2004, 30(2): 325-335.

[29]

Zheng G. A Checklist on the classification and Distribution of the Birds of the World, 2002 Beijing: Science Press 103-215.

[30]

Zheng Z. China bird Retrieval System, 2002 3rd ed. Beijing: Science Press 77-119.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/