A microsatellite study on outcrossing rates and contamination in an Eucalyptus globulus breeding arboretum

Hong-xin Rao , Briony Patterson , Brad Potts , Réne Vaillancourt

Journal of Forestry Research ›› 2008, Vol. 19 ›› Issue (2) : 136 -140.

PDF
Journal of Forestry Research ›› 2008, Vol. 19 ›› Issue (2) : 136 -140. DOI: 10.1007/s11676-008-0023-6
Research Paper

A microsatellite study on outcrossing rates and contamination in an Eucalyptus globulus breeding arboretum

Author information +
History +
PDF

Abstract

Four pairs of microsatellite molecular polymorphism primers were used to analyse microsatellite fingerprints of 188 seedlings derived from an open-pollinated progeny grafted Eucalyptus globulus breeding arboretum in Victoria, south-eastern Australia. The microsatellite loci chosen for this study were highly polymorphic with the mean number of alleles per locus of 14.25. Individual mothers varied in their outcrosssing rate estimate from 15% to 95%, the overall outcrossing level in the arboretum was 47.9% and the contamination rate was 17.6%. The high selfing level was likely to result in marked inbreeding depression in the performance of open-pollinated seed lots. Open-pollinated seeds collected from such arboreta are not advisable because of its low genetic quality, although such arboreta may be useful for the seed production through large-scale manual pollination or collecting seeds only from trees or genotypes within the arboretum that have high outcrossing rates.

Keywords

E. globulus / breeding arboretum / microsatellite / outcrossing rate / pollen contamination

Cite this article

Download citation ▾
Hong-xin Rao, Briony Patterson, Brad Potts, Réne Vaillancourt. A microsatellite study on outcrossing rates and contamination in an Eucalyptus globulus breeding arboretum. Journal of Forestry Research, 2008, 19(2): 136-140 DOI:10.1007/s11676-008-0023-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barbour R.C., Potts B.M., Vaillancourt R.E. Pollen dispersal from exotic eucalypt plantations Conservation Genetics, 2005, 6: 253-257.

[2]

Brondani R.P.V., Brondani C., Tarchini R., Grattapaglia D. Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla Theoretical and Applied Genetics, 1998, 97: 816-827.

[3]

Chaix G., Gerber S., Razafimaharo V. et al. Gene flow estimation with microsatellites in a Malagasy seed orchard of Eucalyptus grandis Theoretical and Applied Genetics, 2003, 107: 705-712.

[4]

Doughty R.W. The Eucalyptus: A natural and commercial history of the gum tree, 2000 Baltimore and London: The Johns Hopkins University Press 225-228.

[5]

Doyle J.J., Doyle J.L. Extraction of plant DNA from fresh tissue Focus, 1990, 12: 13-15.

[6]

Eldridge K., Davidson J., Harwood C., Van Wyk G. Eucalypt Domestication and Breeding, 1993 Oxford: Oxford University Press p332-334.

[7]

El-Kassaby Y.A., Ritland K. The relation of outcrossing and contamination to reproductive phenology and supplemental mass pollination in a Douglas-fir orchard Silvae Genetica, 1986, 35: 240-244.

[8]

FAO. Global forest resources assessment 2000-main report. FAO Forestry paper 140, 2000 [2008-03-07]. http://www.fao.org/forestry/fo/fra/main/index.jsp.

[9]

Foster S.A., McKinnon G.E., Steane D.A., Potts B.M., Vaillancourt R.E. Parallel evolution of dwarf ecotypes in the forest tree Eucalyptus globulus New Phytologist, 2007, 175: 370-380.

[10]

Fuchs E.J., Lobo J.A., Quesada M. Effects of forest fragmentation and flowering phenology on the reproductive success and mating patterns of the tropical dry forest tree Pachira quinata Conservation Biology, 2003, 17: 149-157.

[11]

Gore PL, Potts BM. 1995. The genetic control of flowering time in Eucalyptus globulus, E. nitens and their F1 hybrids.Proc. In: BM Potts, NMG Borralho, JB Reid, et al. (eds). CRCTHF-IUFRO Conf. Hobart: CRCTHF-IUFRO, pp.241–242.

[12]

Grattapaglia D., Ribeiro V.J., Rezende G.D. Retrospective selection of elite parent trees using paternity testing with microsatellite markers: an alternative short term breeding tactic for Eucalyptus Theoretical Applied Genetics, 2004, 109: 192-199.

[13]

Griffin A.R., Whitemen P., Rudge T., Burgess I.P., Moncur Ml. Effect of paclobutrazol on flower-bud production and vegetative growth in two species of Eucalyptus Canadian Journal of Forest Research, 1993, 23: 630-647.

[14]

Harbard J.L., Griffin A.R., Espejo J. Mass controlled pollination of Eucalyptus globulus: a practical reality Canadian Journal of Forest Research, 1999, 29: 1457-1463.

[15]

Hardner C.M., Potts B.M. Inbreeding depression and changes in variation after selfing Eucalyptus globulus subsp globulus Silvae Genetica, 1995, 44: 46-54.

[16]

Hardner C.M., Vaillancourt R.E., Potts B.M. Stand density influences outcrossing rate and growth of open-pollinated families of Eucalyptus globules Silvae Genetica, 1996, 45: 226-228.

[17]

Hardner C.M., Vaillancourt R.E., Potts B.M. Stand density influences outcrossing rate and growth of open-pollinated families of Eucalyptus globulus Silvae Genetica, 1996, 44: 46-54.

[18]

Harju A.M., Nikkanen T. Reproductive success of orchard and non-orchard pollens during different stages of pollen shedding in a Scots pine seed orchard Canadian Journal of Forest Research, 1996, 26: 1096-1102.

[19]

Lai H., Wang Z. Comparison of genetic structure between parents and progeny from a Masson Pine seed orchard and a plantation nearby Forest Scientific Research, 1997, 10: 490-494.

[20]

Lee S.L. Mating system parameters of Dryobalanops aromatica Gaertn. F. (Dipterocarpaceae) in three different forest types and a seed orchard Heredity, 2000, 85: 338-345.

[21]

Marshall T.C., Slate J., Kruuk L.E.B.I. Statistical confidence for likelihood-based paternity inference in natural populations Molecular Ecology, 1998, 7: 639-655.

[22]

McGowen M.H., Potts B.M., Vaillancourt R.E., Gore P., Williams D.R., Pibeam D.J. Borralho N.M.G., Periera J.S., Marques C., Coutinho J., Madeira M., Tome M. The genetic control of sexual reproduction in Eucalyptus globulus Eucalyptus in a changing world, 2004 Portugal: Averio 104-108.

[23]

McGowen M.H., Williams D.R., Potts B.M., Vaillancourt R.E. Stability of outcrossing rates in Eucalyptus globulus seedlots Silvae Genetica, 2004, 53: 42-44.

[24]

Megan J., Mervyn S., Robert H., Angela D. Pollen flow in Eucalyptus grandis determined by paternity analysis using microsatellite markers Tree Genetics & Genomes, 2008, 4: 37-47.

[25]

Moncur M.W., Mitchell A., Fripp Y., Kleinschmidt G.J. The role of honey bees (Apis mellifera) in eucalypt plantation forestry Commonwealth Forestry Review, 1995, 74: 350-354.

[26]

Moriguchi Y., Taira H., Tsumura Y. Gene flow of seed orchard in Cryptomeria japonica d.don using microsatellite markers Plant Animal Genome, 2002, 10: 562

[27]

Obayashi K., Tsumura Y., Ihara-Ujino T., Niivama K., Tanouchi H., Suyama Y., Washitani I., Lee C., Lee S., Muhammad N. Genetic diversity and outcrossing rate between undisturbed and selectively logged forests of Shorea curtisii (Dipterocarpaceae) using microstatellite DNA analysis International Journal of Plant Sciences, 2002, 163: 151-158.

[28]

Pakkanen A., Nikkanen T., Pulkkinen P. Annual variation in pollen contamination and outcrossing in a Picea abies seed orchard Scandanavian Journal of Forest Research, 2000, 15: 399-404.

[29]

Patterson B., Peter G., Potts B. et al. Advances in pollination techniques for large-scale seed production in Eucalyptus globulus Australian Journal of Botany, 2004, 52: 781-787.

[30]

Patterson B., Vaillancourt R.E., Pilbeam D., Potts B.M. Factors affecting variation in outcrossing rate in Eucalyptus globulus Australian Journal of Botany, 2004, 52: 773-780.

[31]

Patterson B., Vaillancourt R., Potts B. Eucalypt seed collectors: beware of sampling seedlots from low in the canopy Australian Forestry, 2001, 64: 139-142.

[32]

Potts B.M., Vaillancourt R.E., Jordan G., Dutkouski G., Silva J., Mckinnon G., Steane D., Volker P., Lopez G., Apiolaza L., Li Y., Marques C., Borralho N. Borralho N., Pereira J.S., Marques C., Cotinho J., Madeira M., Tome M. Exploration of the Eucalyptus globulus gene pool Eucalyptus in a changing world, 2004 Portugal: Aveiro 46-61.

[33]

Potts B, McGowen M, Williams D. 2007. Advances in reproductive biology and seed production systems of Eucalyptus: The case of Eucalyptus globulus. In: Book of abstracts of IUFRO conference-Eucalypts and Diversity: Balancing Productivity and Sustainabilty, Durban, South Africa, pp.22–26.

[34]

Pound L.M., Wallwork M.A.B., Potts B.M., Sedgley M. Early ovule development following self-and cross-pollinations in Eucalyptus globulus Labill. ssp. globulus Annals of Botany, 2002, 89: 613-620.

[35]

Pound L.M., Wallwork M.A.B., Potts B.M., Sedgley M. Self-incompatibility in Eucalyptus globulus ssp. globulus (Myrtaceae) Australian Journal of Botany, 2002, 50: 365-372.

[36]

Russell J, Marshall D, Griffin R, Harbard J, Powell W. 2001.Gene flow in South American Eucalyptus grandis and Eucalyptus globulus seed orchards. In: TUFRO symposium-developing the eucalypt of the future. Chile, Valdivia: pp.149–150.

[37]

Slate J., Marshall T.C., Pemberton J.M. A retrospective assessment of the accuracy of the paternity inference program Cervus Molecular Ecology, 2000, 9: 801-808.

[38]

Steane D.A., Vaillancourt R.E., Russell J., Powell W., Marshall D., Potts B.M. Development and characterisation of microsatellite loci in Eucalyptus globulus (Myrtaceae) Silvae Genetica, 2001, 50: 89-91.

[39]

Yang M., Wu Z., Chen S. Ecological Effect of Eucalyptus Forest and Its Ecological Forest Management Eucalypt Science & Technology, 2006, 23: 32-39.

[40]

Zang D., Wang H., You Y. et al. Potts B.M., Borralho N.M.G., Reid J.B. et al. Performance and selection of a 4-year Eucalyptus globulus seedling seed orchard in Yunnan, China Eucalypt Plantations: Improving Fibre Yield and Quality, 1995 Hobart, Tasmania: Proc. CRCTHF-IUFRO 226-229.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/