Verification of the resistance of a LEA gene from Tamarix expression in Saccharomyces cerevisiae to abiotic stresses

Bing-feng Wang , Yu-cheng Wang , Da-wei Zhang , Hong-yan Li , Chuan-ping Yang

Journal of Forestry Research ›› 2008, Vol. 19 ›› Issue (1) : 58 -62.

PDF
Journal of Forestry Research ›› 2008, Vol. 19 ›› Issue (1) : 58 -62. DOI: 10.1007/s11676-008-0010-y
Research Paper

Verification of the resistance of a LEA gene from Tamarix expression in Saccharomyces cerevisiae to abiotic stresses

Author information +
History +
PDF

Abstract

The role of late embryogenesis abundant (LEA) proteins in stress tolerance was examined by using a yeast expression system. LEA protein tolerance to the abotic stresses in plants involved in salt, drought and freezing stresses and additional tolerance to heat, Na-HCO3 (salt-alkali) and ultraviolet radiation was also investigated. The transgenic yeast harboring the Tamarix LEA gene (DQ663481) was generated under the control of inducible GAL promoter (pYES2 vector), yeast cells transformed with pYES2 empty vector were also generated as a control. Stress tolerance tests showed that LEA yeast transformants exhibited a higher survival rates than the control transformants under high temperature, NaHCO3, ultraviolet radiation, salt (NaCl), drought and freezing, indicating that the LEA gene is tolerant to these abiotic stresses. These results suggest that the LEA gene is resistant to a wider repertoire of stresses and may play a common role in plant acclimation to the examined stress conditions.

Keywords

LEA gene / abiotic stress / transgenic yeast / stress tolerance

Cite this article

Download citation ▾
Bing-feng Wang, Yu-cheng Wang, Da-wei Zhang, Hong-yan Li, Chuan-ping Yang. Verification of the resistance of a LEA gene from Tamarix expression in Saccharomyces cerevisiae to abiotic stresses. Journal of Forestry Research, 2008, 19(1): 58-62 DOI:10.1007/s11676-008-0010-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Babu R.C., Zhang J.X., Blum A., Ho T.H.D., Wu R., Nguyen H.T. HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection Plant Sci, 2004, 166(4): 855-862.

[2]

Chourey K., Ramani S., Apte S.K. Accumulation of LEA proteins in salt (NaCl) stressed young seedlings of rice (Oryza sativa L.) cultivar Bura Rata and their degradation during recovery from salinity stress J Plant Physiol, 2003, 160(10): 1165-1174.

[3]

Danyluk J., Perron A., Houde M., Limin A.E., Fowler D.B., Benhamou N., Sarhan F. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat Plant Cell, 1998, 10(4): 623-638.

[4]

Galau G.A., Wang H.Y., Hughes D.W. Cotton Lea5 and Lea14 encode atypical late embryogenesis-abundant proteins Plant Physiol, 1993, 101(2): 695-696.

[5]

Grelet J., Benamar A., Teyssier E., Avelange-Macherel M.H., Grunwald D., Macherel D. Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying Plant Physiol, 2005, 137(1): 157-167.

[6]

Goyal K., Walton L.J., Tunnacliffe A. LEA proteins prevent protein aggregation due to water stress Biochem J, 2005, 388: 151-157.

[7]

Goyal K., Walton L.J., Browne J.A., Burnell A.M., Tunnacliffe A. Molecular anhydrobiology: identifying molecules implicated in invertebrate Anhydrobiosis Integr Comp Biol, 2005, 45(5): 702-709.

[8]

Han Y., Wilson D.B., Lei X.G. Expression of an aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae Appl Environ Microbial, 1999, 65(5): 1915-1918.

[9]

Hasegawa P.M., Bressan R.A., Zhu J.K., Bohnert H.J. Plant cellular and molecular responses to high salinity Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 46-499.

[10]

Jeong M.J., Park S.C., Kwon H.B., Byun M.O. Isolation and characterization of the gene encoding Glyceraldehyde-3-Phosphate Dehydrogenase Biochem Biophys Res Commun, 2000, 278(1): 192-196.

[11]

Kim H.S., Lee J.H., Kim J.J., Kim C.H., Jun S.S., Hong Y.N. Molecular and functional characterization of CaLEA6, the gene for a hydrophobic LEA protein from Capsicum annuum Gene, 2005, 344: 115-123.

[12]

Liang C.Y., Xi Y., Shu J., Li J., Yang J.L., Che K.P., Jin D.M., Liu X.L., Weng M.L., He Y.K., Wang B. Construction of a BAC library of Physcomitrella patens and isolation of a LEA gene Plant Sci, 2004, 167(3): 491-498.

[13]

Mahalakshmi S., Christopher G.S., Reddy T.P., Rao K.V., Reddy V.D. Isolation of a cDNA clone (PcSrp) encoding serine-rich-protein from Porteresia coarctata T. and its expression in yeast and finger millet (Eleusine coracana L.) affording salt tolerance Planta, 2006, 224(2): 347-359.

[14]

Manfre A.J., Lanni L.M., Marcotte ,. WR. Jr The Arabidopsis group 1 LATE EMBRYOGENESIS ABUNDANT protein ATEM6 is required for normal seed development Plant Physiol, 2006, 140(1): 140-149.

[15]

Moons A., De K.A., Van M.M. A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response Gene, 1997, 191: 197-204.

[16]

Posas F., Chambers J.R., Heyman J.A., Hoeffler J.P., de Nadal E., Arino J. The transcriptional response of yeast to saline stress J Biol Chem, 2000, 275(23): 17249-17255.

[17]

Rausell A., Kanhonou R., Yenush L., Serrano R., Ros R. The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants Plant J, 2003, 34(3): 257-267.

[18]

Raynal M., Gaubier P., Grellet F., Delseny M. Nucleotide sequence of a radish cDNA clone coding for a late embryogenesis abundant (LEA) protein Nucleic Acids Res, 1990, 18 20 6132

[19]

Serrano R., Montesinos C. Molecular Bases of Desiccation Tolerance in plant cells and potential applications in food dehydration Food Sci Technol Int, 2003, 9(3): 157-161.

[20]

Serrano R., Rodriguez-Navarro A. Ion homeostasis during salt stress in plants Curr Opin Cell Biol, 2001, 13: 399-404.

[21]

Shao H.B., Liang Z.S., Shao M.A. LEA proteins in higher plants: Structure, function, gene expression and regulation Colloids Surf B Biointerfaces, 2005, 45(3–4): 131-135.

[22]

Shih M.D., Lin S.C., Hsieh J.S., Tsou C.H., Chow T.Y., Lin T.P., Hsing Y.I. Gene cloning and characterization of a soybean (Glycine max L.) LEA protein GmPM16 Plant Mol Bio, 2004, 56: 689-703.

[23]

Shimamura C., Ohno R., Nakamura C., Takumi S. Improvement of freezing tolerance in tobacco plants expressing a cold-responsive and chloroplast-targeting protein WCOR15 of wheat J Plant Physiol, 2006, 163: 213-219.

[24]

Soulages J.L., Kim K., Walters C., Cushman J.C. Temperature-Induced extended Helix/Random coil transitions in a group 1 late embryogenesis-abundant protein from Soybean Plant Physiol, 2002, 128(3): 822-832.

[25]

Wang Y.J., Yu J.N., Chen T., Zhang Z., Hao Y., Zhang J., Chen S. Functional analysis of a putative Ca2+ channel gene TaTPC1 from wheat J Exp Bot, 2005, 56(422): 3051-3060.

[26]

Zhang X.X., Takano T., Liu S.K. Identification of a mitochondrial ATP synthase small subunit gene (RMtATP6) expressed in response to salts and osmotic stresses in rice (Oryza sativa L. J Exp Bot, 2006, 57(1): 193-200.

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/