Temperature dependence of nitrogen mineralization and microbial status in OH horizon of a temperate forest ecosystem

Ali Bagherzadeh , Rainer Brumme , Friedrich Beese

Journal of Forestry Research ›› 2008, Vol. 19 ›› Issue (1) : 37 -43.

PDF
Journal of Forestry Research ›› 2008, Vol. 19 ›› Issue (1) : 37 -43. DOI: 10.1007/s11676-008-0006-7
Research Paper

Temperature dependence of nitrogen mineralization and microbial status in OH horizon of a temperate forest ecosystem

Author information +
History +
PDF

Abstract

It was hypothesized that increasing air and/or soil temperature would increase rates of microbial processes including litter decomposition and net N mineralization, resulting in greater sequestration of carbon and nitrogen in humus, and consequently development in OH horizon (humus horizon). To quantify the effect of temperature on biochemical processes controlling the rate of OH layer development three adjacent forest floors under beech, Norway spruce and mixed species stands were investigated at Solling forest, Germany by an incubation experiment of OH layer for three months. Comparing the fitted curves for temperature sensitivity of OH layers in relation to net N mineralization revealed positive correlation across all sites. For the whole data set of all stands, a Q10 (temperature sensitivity index) value of 2.35–2.44 dependent on the measured units was found to be adequate for describing the temperature dependency of net N mineralization at experimental site. Species-specific differences of substrate quality did not result in changes in biochemical properties of OH horizon of the forest floors. Temperature elevation increased net N mineralization without significant changes in microbial status in the range of 1 to 15°C. A low Cmic/Corg (microbial carbon/organic carbon) ratio at 20°C indicated that the resource availability for decomposers has been restricted as reflected in significant decrease of microbial biomass.

Keywords

beech / spruce / nitrogen mineralization / forest floor / temperature / temperature sensitivity index (Q10)

Cite this article

Download citation ▾
Ali Bagherzadeh, Rainer Brumme, Friedrich Beese. Temperature dependence of nitrogen mineralization and microbial status in OH horizon of a temperate forest ecosystem. Journal of Forestry Research, 2008, 19(1): 37-43 DOI:10.1007/s11676-008-0006-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aber J.D., Melillo J.M. Terrestrial Ecosystems, 1991 Florida: Rinehart and Winston Inc 430

[2]

Anderson T.H. Microbial eco-physiological indicators to asses soil quality Agriculture, Ecosystems and Environment, 2003 — Elsevier, 2003, 98(1–3): 285-293.

[3]

Anderson J.M. The effects of climate change on decomposition processes in grassland and coniferous forests Ecological Applications, 1991, 1: 326-347.

[4]

Anderson J.M. Responses of soils to climate change Advances in Ecological Research, 1992, 22: 163-210.

[5]

Bauhus J., Barthel R. Mechanisms for carbon and nutrient release and retention in beech forest gaps II. The role of soil microbial biomass Plant and Soil, 1995, 168-169: 585-592.

[6]

Berg B., McClaugherty C. Plant litter. Decomposition, humus formation, carbon sequestration, 2003 Heidelberg, Berlin: Springer Verlag

[7]

Blagodatskaya E.V., Anderson T.H. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils Soil Biol and Biochem, 1998, 30(10–11): 1269-1274.

[8]

Bonan G.B., Van Cleve K. Soil temperature, nitrogen mineralization, and carbon source-sink relationships in boreal forests Can. J. Forest Res, 1991, 22: 629-639.

[9]

Brookes P.C., Landman A., Pruden G., Jenkinson D.S. Chloroform fumigation and the release of soil nitrogen Soil Biol and Biochem, 1985, 17: 837-842.

[10]

Buberl H.G., v Wilpert K., Trefz-Malcher G., Hildebrand E.E., Wiebel M. Der chemische Zustand von Waldböden in Baden-Württemberg, 1994 Baden-Württemberg: Mitteilungen der Versuchs-und Forschungsanstalt 182

[11]

Campbell C.A., Jame Y.W., Winkleman G.E. Mineralization rate constants and their use for estimating nitrogen mineralization in some Canadian prairie soils Can J Soil Sci, 1984, 64: 333-343.

[12]

Dalias P., Anderson J.M., Bottner P., Couteaux M.M. Temperature responses of net nitrogen mineralization and nitrification in conifer forest soils incubated under standard laboratory conditions Soil Biol and Biochem, 2002, 34: 691-701.

[13]

De Neve S., Pannier J., Hofman G. Temperature effects on C-and N-mineralization from vegetable crop residues Plant and Soil, 1996, 181: 25-30.

[14]

Djajakirana G., Joergensen R.G., Meyer B. Ergosterol and microbial biomass relationship in soil Bio Fert Soils, 1996, 22: 299-304.

[15]

Ellert B.H., Bettany J.R. Temperature dependence of net nitrogen and sulfur mineralization Soil Sci Soc Amer J, 1992, 56: 1133-1141.

[16]

Emmer I.M., Tietema A. Temperature-dependent nitrogen transformation in acid oak-beach forest litter in the Netherlands Plant and Soil, 1990, 122: 193-196.

[17]

Goncalves J.L.M., Caryle J.C. Modelling the influence of moisture and temperature on net nitrogen mineralization in a forested sandy soil Soil Biol and Biochem, 1994, 26: 1557-1564.

[18]

Hallbäcken L., Tamm C.O. Changes in Soil Acidity from 1927 to 1982-1984 in a Forest Area of South-West Sweden Scand J Forest Res, 1986, 1: 219-232.

[19]

Heisner U., Wilpert K., Hildbrand E.E. Vergleich aktueller Messungen zum Aziditätsstatus südwestdeutscher Waldböden mit historischen Messungen von 1927 Allg Forst Jagdztg, 2003, 174: 2-3.

[20]

Hobbie S.E. Temperature and plant species control over litter decomposition in Alaskan tundra Ecological Monographs, 1996, 66: 503-522.

[21]

Jansson P.E., Berg B. Temporal variation of litter decomposition in relation to simulated soil climate. Long-term decomposition in a scots pine forest Can J Bot, 1985, 63: 1008-10160.

[22]

Joergensen R.G. The fumigation-extraction method to estimate soil microbial biomass Soil Biol and Biochem, 1996, 28: 25-31.

[23]

Killham K. Soil Ecology, 1994 Cambridge: Cambridge University press 242

[24]

Kladivko E.J., Keeney D.R. Soil nitrogen mineralization as affected by water and temperature interactions Biol Fert Soils, 1987, 5: 248-252.

[25]

Lioyd J., Taylor J.A. On the temperature dependence of Soil respiration Func Ecol, 1994, 8: 315-323.

[26]

MacDonald N.W., Zak D.R., Pregitzer K.S. Temperature effects on kinetics of microbial respiration and net nitrogen and Sulphur mineralization Soil Sci Soc Amer J, 1995, 59: 233-240.

[27]

Nadelhoffer K.J., Giblin A.E., Shaver G.R., Laundre J.A. Effects of temperature and substrate quality on element mineralization in six Arctic soils Ecology, 1991, 72: 242-253.

[28]

Poehhacker R., Zech W. Influence of temperature on CO2 evolution, microbial biomass C and metabolic quotient during the decomposition of two humic forest horizons Biol Fert Soils, 1995, 19: 239-245.

[29]

Post W.M., Pastor J., Zinke P.J., Stangenberger A.G. Global patterns of soil nitrogen storage Nature, 1985, 317: 613-616.

[30]

Raich J.W., Schlesinger W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate Tellus, 1992, 44: 81-89.

[31]

Raubuch M. The impact of moisture and temperature on adenylate content and adenylate energy of microbial communities in the litter of coniferous forest soils Verhandlungen der Gesellschaft für Ökologie, 1998, 28: 415-419.

[32]

Raubuch M., Joergensen R.G. C and net N mineralisation in a coniferous forest soil: the contribution of the temporal variability of microbial biomass C and N Soil Biol and Biochem, 2002, 34(6): 841-849.

[33]

Reich P.B., Grigal D.F., Aber J.D., Gower Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils Ecology, 1997, 78: 335-347.

[34]

Rustad L.E., Melillo J.M., Mitchell M.J., Fernandez I.J., Steudler P.A., McHale P.J. Micker R., Birdsey R., Hom J. Effects of soil warming on C and N cycling in northern U.S. forest soils Responses of northern U.S. forests to environmental change, 2000 New York: Springer Berlin, Heidelberg, New York 357-381.

[35]

Sprent J.I. The ecology of the nitrogen cycle, 1987 Cambridge: University Press

[36]

Tiktak A., Bredemeier M., Van Heerden K. The Solling dataset: Site characteristics, monitoring data and deposition scenarios Ecological Modelling, 1995, 83: 17-34.

[37]

Ulrich B. Godbold D.L., Hüttermann A. Nutrient and acid-base budget of central European forest ecosystems Effects of Acid Rain on Forest Ecosystems, 1994 New York: John Wiley 1-50.

[38]

Van Cleve L., Oechel W.C., Hom J.L. Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior Alaska Can J Forest Res, 1990, 20: 1530-1535.

[39]

Vance E.D., Brookes P.C., Jenkinson D.S. An extraction method for measuring soil microbial biomass C Soil Biol and Biochem, 1987, 19: 703-707.

[40]

Vigil m., Kissel D.E. Rate of nitrogen mineralized from incorporated crop residues as influenced by temperature Soil Sci Soc of Amer J, 1995, 59: 1636-1644.

[41]

Walbridge M.R., Vitousek P.M. Phosphorous mineralization potentials in acid organic soils: processes affecting 32PO4 isotope dilution measurements Soil Biol and Biochem, 1987, 19: 709-717.

[42]

Wollf B, Riek W. 1997. Deutscher Waldbodenbericht 1996.BMELF, Bd 1, und Bd 2..

[43]

Zezschwitz E. Analytische Kennwerte typischer Humusformen westfälischer Bergwälder Zeitschrift für Pflanzenernährung and Bodenkunde, 1980, 143: 692-700.

AI Summary AI Mindmap
PDF

213

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/