Carbon fluxes and their response to environmental variables in a Dahurian larch forest ecosystem in northeast China

Hui-min Wang , Nobuko Saigusa , Yuan-gang Zu , Wen-jie Wang , Susumu Yamamoto , Hiroaki Kondo

Journal of Forestry Research ›› 2008, Vol. 19 ›› Issue (1) : 1 -10.

PDF
Journal of Forestry Research ›› 2008, Vol. 19 ›› Issue (1) : 1 -10. DOI: 10.1007/s11676-008-0001-z
Research Paper

Carbon fluxes and their response to environmental variables in a Dahurian larch forest ecosystem in northeast China

Author information +
History +
PDF

Abstract

The Dahurian larch forest in northeast China is important due to its vastness and location within a transitional zone from boreal to temperate and at the southern distribution edge of the vast Siberian larch forest. The continuous carbon fluxes were measured from May 2004 to April 2005 in the Dahurian larch forest in Northeast China using an eddy covariance method. The results showed that the ecosystem released carbon in the dormant season from mid-October 2004 to April 2005, while it assimilated CO2 from the atmosphere in the growing season from May to September 2004. The net carbon sequestration reached its peak of 112 g·m−2·month−1 in June 2004 (simplified expression of g (carbon)·m−2·month−1) and then gradually decreased. Annually, the larch forest was a carbon sink that sequestered carbon of 146 g·m−2·a−1 (simplified expression of g (carbon)·m−2·a−1) during the measurements. The photosynthetic process of the larch forest ecosystem was largely affected by the vapor pressure deficit (VPD) and temperature. Under humid conditions (VPD < 1.0 kPa), the gross ecosystem production (GEP) increased with increasing temperature. But the net ecosystem production (NEP) showed almost no change with increasing temperature because the increment of GEP was counterbalanced by that of the ecosystem respiration. Under a dry environment (VPD > 1.0 kPa), the GEP decreased with the increasing VPD at a rate of 3.0 μmol·m−2·s·kPa−1 and the ecosystem respiration was also enhanced simultaneously due to the increase of air temperature, which was linearly correlated with the VPD. As a result, the net ecosystem carbon sequestration rapidly decreased with the increasing VPD at a rate of 5.2 μmol·m−2·s−1·kPa−1. Under humid conditions (VPD < 1.0 kPa), both the GEP and NEP were obviously restricted by the low air temperature but were insensitive to the high temperature because the observed high temperature value comes within the category of the optimum range.

Keywords

carbon balance / eddy covariance method / environmental effect / larch forest / Larix gmelinii

Cite this article

Download citation ▾
Hui-min Wang, Nobuko Saigusa, Yuan-gang Zu, Wen-jie Wang, Susumu Yamamoto, Hiroaki Kondo. Carbon fluxes and their response to environmental variables in a Dahurian larch forest ecosystem in northeast China. Journal of Forestry Research, 2008, 19(1): 1-10 DOI:10.1007/s11676-008-0001-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baldocchi D.D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future Glob Change Biol, 2003, 9: 479-492.

[2]

Baldocchi D.D., Hicks B.B., Meyers T.P. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods Ecology, 1988, 69: 1331-1340.

[3]

Baldocchi D.D., Vogel C.A. A comparative study of water vapor, energy and CO2 flux densities above and below a temperate broadleaf and boreal pine forest Tree Physiol, 1996, 16: 5-16.

[4]

Baldocchi D.D., Vogel C.A., Hall B. Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest Agr For Meteorol, 1997, 83: 147-170.

[5]

Barford C.C., Wofsy S.C., Goulden M.L., Munger J.W., Pyle E.H., Urbanski S.P., Hutyra L., Salesaka S.R., Fitzjarrald D., Moore K. Factors controlling long-and short-term sequestration of atmospheric CO2 in a mid-latitude forest Science, 2001, 294: 1688-1691.

[6]

Brooks A., Farquhar G.D. Effects of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light Planta, 1985, 165: 397-406.

[7]

Chen W.J., Black T.A., Yang P.C., Barr A.G., Neumann H.H., Nesic Z., Blanken P.D., Novak M.D., Eley J., Ketler R.J., Cuenca R. Effect of climatic variability on the annual carbon sequestration by a boreal aspen forest Glob. Change Biol, 1999, 5: 41-53.

[8]

Clark K.L., Gholz H.L., Moncrieff J.B., Cropley F., Loescher H.W. Environmental controls over net exchanges of carbon dioxide from contrasting Florida ecosystems Ecol Appl, 1999, 9: 936-948.

[9]

Denning A.S., Fung I.Y., Randall D. Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land and biota Nature, 1995, 376: 240-243.

[10]

Falge E., Baldocchi D.D., Tenhunen J., Aubinet M., Bakwin P., Berbigier P., Bernhofer C., Burba G., Clement R., Davis K.J., Elbers J.A., Goldstein A.H., Grelle A., Granier A., Guðmundsson J., Hollinger D., Kowalski A.S., Katul G., Law B.E., Malhi Y., Meyers T., Monson R.K., Munger J.W., Oechel W., Paw U.K.T., Pilegaard K., Rannik, Rebmann C., Suyker A., Velentini R., Wilson K., Wofsy S. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements Agr Forest Meteorol, 2002, 113: 53-74.

[11]

Fan S.-M., Goulden M.L., Munger J.W., Daube B.C., Bakwin P.S., Wofsy S.C., Amthor J.S., Fitzjarrald D.R., Moor K.E., Moor T.R. Environmental controls on the photosynthesis and respiration of a boreal lichen woodland: A growing season of whole-ecosystem exchange measurements by eddy correlation Oecologia, 1995, 102: 443-452.

[12]

Fang J., Tang Y., Koizumi H., Bekku Y. The evidence of CO2 emission from soil surface in a high-latitude region in winter Sci China Ser D-Earth Sci, 1999, 42: 378-382.

[13]

Goulden M.L., Daube B.C., Fan S.M., Sutton D.J., Bazzaz A., Munger J.W., Wofsy S.C. Physiological responses of a black spruce forest to weather J Geophys Res, 1997, 102: 28987-28996.

[14]

Goulden M.L., Munger J.W., Fan S.M., Daube B.C., Wofsy S.C. Measurements of carbon sequestration by long-tern eddy covariance: methods and a critical evaluation of accuracy Global Change Biology, 1996, 2: 169-182.

[15]

Gower S.T., Richards J.H. Larches: Deciduous conifers in an evergreen world Bioscience, 1990, 40: 818-826.

[16]

Hirano T., Hirata R., Fujinuma Y., Saigusa N., Yamamoto S., Harazono Y., Takada M., Inukai K., Inoue G. CO2 and water vapor exchange of a larch forest in northern Japan Tellus Ser B, 2003, 55: 244-257.

[17]

Hollinger D.Y., Kelliher F.M., Byers J.N., Hunt J.E., McSeveny T.M., Weir P.L. Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere Ecology, 1994, 75: 134-150.

[18]

Hollinger D.Y., Kelliher F.M., Schulze E.D., Bauer G., Arneth A., Byers J.N., Hunt J.E., McSeveny T.M., Kobak K.I., Milukova I., Sogatchev A., Tatarinov F., Varlargin A., Ziegler W., Vygodskaya N.N. Forest-atmosphere carbon dioxide exchange in eastern Siberia Agr Forest Meteorol, 1998, 90: 291-306.

[19]

IGBP Terrestrial Carbon Working Group. The Terrestrial Carbon Cycle: Implications for the Kyoto Protocol Science, 1998, 280: 1393-1394.

[20]

Janssens I.A., Lankreijer H., Matteucci G., Kowalski A.S., Buchmann N., Epron D., Pilegaard K., Kutsch W., Longdoz B., Grunwald T., Montagnani L., Dore S., Rebmann C., Moors E.J., Grelle A., Rannik U., Morgenstern K., Oltchev S., Clement R., Gudmundsson J., Minerbi S., Berbigier P., Ibrom A., Moncrieff J., Aubinet M., Bernhofer C., Jensen N.O., Vesala T., Granier A., Schulze E.D., Lindroth A., Dolman A.J., Jarvis P.G., Ceulemans R., Valentini R. Productivity overshadows temperature in determining soil and ecosystem respiration across European forest Glob Change Biol, 2001, 7: 269-278.

[21]

Jiang Y.L., Zhou G.S. Carbon balance of Larix gmelini forest and impacts of management practices Acta Phytoecologica Sinica, 2002, 26: 317-322.

[22]

Kajimoto T., Matsuura Y., Osawa A., Prokushkin A.S., Sofronov M.A., Abaimov A.P. Root system development of Larix gmelinii trees by micro-scale conditions of permafrost soils in central Siberia Plant Soil, 2003, 255: 281-292.

[23]

Kim J., Verma S.B. Carbon dioxide exchange in a temperate grassland ecosystem Bound-Layer Meteor, 1990, 52: 135-169.

[24]

Lee X.H. On micrometeorological observations of surface-air exchange over tall vegetation Agric Forest Meteorol, 1998, 91: 39-49.

[25]

Li B., Yang C., Lin P. Ecology, 2000 Beijing: Higher Education Press 432

[26]

Li SG, Asanuma J, Kotani A, Eugster W, Davaa G, Oyunbaatar D, Sugita M. 2005. Year-round measurement of net ecosystem CO2 flux over a montane larch forest in Mongolia. J Geophys Res, 110: D09303, doi: 10.1029/2004JD-005453.

[27]

Myneni R.B., Dong J., Tucker C.J., Kaufmann R.K., Kauppi P.E., Liski J., Zhou L., Alexeyev V., Hughes M.K. A large carbon sink in the woody biomass of Northern forests Proceedings of the National Academy of Sciences USA (PNAS), 2001, 98: 14784-14789.

[28]

Saigusa N., Yamamoto S., Murayama S., Kondo H., Nishimura N. Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method Agr Forest Meteorol, 2002, 112: 203-215.

[29]

Shi F., Chen X., Wang W., Zu Y. Introduction to the larch-dominant site for CO2 flux in a forest of the Laoshan Experimental Station in Northeast China Proceedings of International Workshop for Advanced Flux Network and Flux Evaluation, 2001 Japan: ASAHI Printing Co. Ltd. Sapporo 87-91.

[30]

Shvidenko A., Nilsson S. What do we know about the Siberian forests? Ambio, 1994, 23: 396-404.

[31]

Tans P.P., Fung I.Y., Takahashi T. Observational constraints on the global atmospheric CO2 budget Science, 1990, 247: 1431-1438.

[32]

Wang H., Saigusa N., Yamamoto S., Kondo H., Zu Y., Yang F., Wang W., Hirano T., Toriyama A., Fujinuma Y. Seasonal variation of net ecosystem CO2 exchange over larch forest in northeast China and northern Japan Proceedings of International Workshop on Flux Observation and Research in Asia, 2003 Beijing: Chinese Ecosystem Research Network 72-73.

[33]

Wang H., Saigusa N., Yamamoto S., Kondo H., Hirano T., Toriyama A., Fujinuma Y. Net ecosystem CO2 exchange over a larch forest in Hokkaido, Japan Atmos Environ, 2004, 38: 7021-7032.

[34]

Wang H., Saigusa N., Zu Y., Yamamoto S., Kondo H., Yang F., Wang W., Hirano T., Fujinuma Y. Response of CO2 flux to environmental variables in two larch forest ecosystems in East Asia Phyton-Ann REI Bot, 2005, 45: 339-346.

[35]

Wang H., Zu Y., Saigusa N., Yamamoto S., Kondo H., Yang F., Wang W. CO2, water vapor and energy fluxes in a larch forest in northeast China J Agr Meteorol, 2005, 60: 549-552.

[36]

Webb E.K., Pearman G.I., Leuning R. Correction of flux measurements for density effects due to heat and water vapor transfer Q J R Meteorol Soc, 1980, 106: 85-100.

[37]

Wilson K., Goldstein A., Falge E., Aubinet M., Baldocchi D., Berbigier P., Bernhofer C., Ceulemans R., Dolman H., Field C., Grelle A., Ibrom A., Law B.E., Kowalski A., Meyers T., Moncrieff J., Monson R., Oechel W., Tenhunen J., Valentini R., Verma S. Energy balance closure at FLUXNET sites Agr Forest Meteorol, 2002, 113: 223-243.

[38]

Wofsy S.C., Goulden M.L., Mounger J.W., Fan S.M., Bakwin P.S., Daube B.C., Bassow S.L., Bazzas F.A. Net exchange of CO2 in a mid-latitude forest Science, 1993, 260: 1314-1317.

[39]

Yamamoto S., Murayama S., Saigusa N., Kondo H. Seasonal and inter-annual variation of CO2 flux between a temperate forest and atmosphere in Japan Tellus ser B, 1999, 51: 402-413.

[40]

Zimov S.A., Semiletov I.P., Daviodov S.P., Voropaev V.Y., Prosyannikov S.F., Wong C.S., Chan Y.H. Wintertime CO2 emission from soils of northeastern Siberia Arctic, 1993, 46: 197-204.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/