Application of theoretical growth functions for Mongolian oak (Qurcus mongolica)

Li Changsheng , Sun Jianfeng , Wu Zhenhai , Francois Houllier

Journal of Forestry Research ›› 1997, Vol. 8 ›› Issue (4) : 195 -200.

PDF
Journal of Forestry Research ›› 1997, Vol. 8 ›› Issue (4) : 195 -200. DOI: 10.1007/BF02875002
Article

Application of theoretical growth functions for Mongolian oak (Qurcus mongolica)

Author information +
History +
PDF

Abstract

Four alternative functions are used for fitting tree height and diameter growth models for mongolian oak. (Quercus mongolica Fisch. et Turcz.). The data set includes 1250 random trees and 755 dominant trees coming from 510 temporary plots. The resultsshow that the Richards function is the best model for predicting height. diameter at breast height (DBH) and dominant height from age. The average growth curve of dominant height is used as a guide curve for the construction of a site index table which is partially validated using an independent data set. The Mitscherlich function is the best model for estimating height and dominant height from DBH.

Keywords

Growth functions / Richards function / Site index / Mongolian oak / Quercus mongolica

Cite this article

Download citation ▾
Li Changsheng, Sun Jianfeng, Wu Zhenhai, Francois Houllier. Application of theoretical growth functions for Mongolian oak (Qurcus mongolica). Journal of Forestry Research, 1997, 8(4): 195-200 DOI:10.1007/BF02875002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Causton, D.R., Venus J.C. 1981. The biometry of plant growth. Edward Arnold. 89–130.

[2]

Clutter J.L., Forston J.C., Pienaar L.V., Brister G.H., Bailey R.L.. Timber management a quantitative approach. 1983, New York: John Wiley & Sons, 333 333

[3]

Houllier F. 1990. Models de croissance en hauteur: remarques sur les relations entre la nature des donnees et le type de modele ajuste. In “Forest growth data: capture retrievel and dissemination” (IUFRO S4.02.03 & S4.02.04 meeting. Gembloux. Belgique 3–5 April 1989). Bull. Rech. Agron. Gembloux. 25(1). 65–75.

[4]

Houllier F., Leban J.M.. Modele theorique de croissance des arbres en peuplements equienne et monospecifique. 1991, Nancy: INRA. Station de Recherches sur la Qualite des Bois

[5]

Zhengchang Hu. The characteristic of mongolian oak of secondary forests. 1979, Harbin: Communication of Forestry Technology

[6]

Ito T., Osumi S. 1985. Applicability of the Richards function to analysis of stand growth in even-aged pure stand. Scientific Rep. Kyoto Pref. Univ. Agri., 112p.

[7]

Jiang Yiyin, Lang Kuijian, Li Fengri, Li Changsheng. 1990a. The Growth of Poplar in Protective plantations. Proceedings of the second International Symposium on Protective Plantation Technology. Harbin. “Protective Plantation Technology”. IV. 380–387.

[8]

Jiang Yiyin, Li Changsheng, Li Fengri. 1990b. The construction of site index tables for Poplar in Protective forests. Proceedings of The Second International Symposium on Protective Plantation Technology, Harbin. “Protective Plantation Technology”. IV. 376–379.

[9]

Kuijiang Lang, Souzheng Tang. The program package of IBM PC series computer. 1989, Beijing: Chinese Forestry Press

[10]

Changsheng Li. Forest growth and yield models(in Chinese). External forestry. Heilongjiang Academy of Forestry, 1988, 1: 20-24.

[11]

Li Changsheng, Gong Weiguang, Li Meng, 1990. Evaluation of site quality for dahurian larch. Proceeding of The First International Symposium on Forest Soil. 1990. Harbin. China. “Forest Soils & Modern Forest Management”. 264–269.

[12]

Changsheng Li, Yiyin Jiang, Wang Yeh-chu. Growth and yield models for dahurian larch plantations. J. Northeast For. Univ. (English edition), 1991, 2(1): 24-29.

[13]

Marquardt D.W.. An algorithm for least squares estimation of nonlinear parameters. Jour. Soc. Indust. Appl. Math., 1963, 11: 431-441.

[14]

Millier C.. Courbes de reponse. “Modeles dynamiques deterministes en biologie” Lebreton & Millier(Eds). 1982, Paris: Masson, 13 58

[15]

Pienaar L.V., Turnbull K.J.. The Chapman-Richards generalization of von Bertalaffys growth model for basal area growth and yield in even-aged stands. Forest Sci., 1973, 19: 2-22.

[16]

Richards F.J.. A flexible growth function for empirical use. Journ. of Experimental Botany, 1959, 10(29): 290-300.

[17]

SAS. 1988. SAS/STAT Guide for personal computers SAS Institute 1028p.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/