Genetic transformation ofPinus taeda by particle bombardment

Tang Wei , Vanessa Samuels

Journal of Forestry Research ›› 2002, Vol. 13 ›› Issue (2) : 91 -97.

PDF
Journal of Forestry Research ›› 2002, Vol. 13 ›› Issue (2) : 91 -97. DOI: 10.1007/BF02857228
Article

Genetic transformation ofPinus taeda by particle bombardment

Author information +
History +
PDF

Abstract

A protocol is presented for genetically engineering loblolly pine (Pinus taeda L.) using particle bombardment. This protocol enabled the routine transformation of loblolly pine plants that were previously difficult to transform. Mature zygotic embryos were used to be bombarded and to generate organogenic callus and transgenic regenerated plants. Plasmid pB48.215 DNA contained a synthetic Bacillus thuringiensis (B.t.) crylAc coding sequence flanked by the double cauliflower mosaic virus (CaMV) 35S promoter and nopaline synthase (Nos) terminator sequences, and the selectable marker gene, neomycin phosphotransferase II (nptil) controlled by the promoter of the nopaline synthase gene was introduced into loblolly pine tissues by particle bombardment. The transformed tissues were proliferated and selected by kanamycin resistance conferred by the introduced NPTIi gene. Shoot regeneration was induced from the kanamycin-resistant callus, and transgenic plantlets were then produced. The presence of the introduced genes in the transgenic loblolly pine plants was confirmed by polymerase chain reactions (PCR) analysis, by Southern blot analysis, and insect feeding assays. The recovered transgenic plants were acclimatized and then established in soil.

Keywords

Pinus taeda L. / Biolistic transformation / Bacillus thuringiensis (B.t.) crylAb / Insect feeding bioassay / Q55 / S791.255.04 / A

Cite this article

Download citation ▾
Tang Wei, Vanessa Samuels. Genetic transformation ofPinus taeda by particle bombardment. Journal of Forestry Research, 2002, 13(2): 91-97 DOI:10.1007/BF02857228

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alam M.F., Datta K., Abrigo E., Vasquez A., Senadhira D., Datta S.K. Production of transgenic deepwater indica rice plants expressing a syntheticBacillus thuringiesis crylA(b) gene with enhanced resistance to yellow stem borer [J]. Plant Sci., 1998, 135: 25-30.

[2]

Cheng X.Y., Saroana R., Kaplan H., Altosaar I. Agrobacterium-transformed rice plants expressing synthetic cry1Ab and cry1Ac genes are highly toxic to striped stem borer and yellow stem borer [J]. Proc Natl Acad Sci USA, 1998, 95: 2767-2772.

[3]

Christou P., Ford T., Kofron M. Production of transgenic rice (Oriza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos [J]. Bio/Technology, 1991, 9: 957-962.

[4]

Christou P, Swain W., Yang N-S, McCabe D. Inheritance and expression of foreign genes in transgenic soybean plants [J]. Proc Natl Acad Sci USA, 1989, 86: 7500-7504.

[5]

Datta K., Vasquez A., Tu J., Torrizo L., Alam M.F., Oliva N., Abrigo E., Khush G.S., Datta S.K. Constitutive and tissue-specific differential expression of crylA(b) gene in transgeic rice plants conferring enhanced resistance to rice insect pest[J] Theor. Appl. Genet., 1998, 97: 20-30.

[6]

Ellis D.D., McCabe D.E., McInniss, Ramachandran R., Russeil D.R., Wallace K.M., Martinell B.J., Roberts D.R., Raffa K.F., McCown B.H. Stable transformation of Picea glauca by particle acceleration [J]. Bio/Technology, 1993, 11: 84-89.

[7]

Fitch M., Manshardt R., Gonsalves D., Slightom J., Sanford J. Stable transformation of papaya via microprojectile bombardment [J]. Plant Cell Rep., 1990, 9: 189-194.

[8]

Franche C., Diouf D., Le Q., Bogusz D., N’Diaye A., Gherbi H., Gobe C., Duhoux E. Genetic transformation of the actinorhizal tree Allocasuarina vertlcillata by Agrobacterium tumefaciens [J]. Plant J., 1997, 11: 897-904.

[9]

Gheysen G., van Montagu M., Zambryski P. Integration ofAgrobacterium tumefaciens T-DNA involves rearrangements of target plant DNA sequences [J]. Proc Natl Acad Sci USA, 1987, 84: 9006-9010.

[10]

Han K-H, Ma C., Strauss S.H. Matrix attachment regions enhance transgene expression and transformation in poplar [J]. Transgen Res., 1997, 6: 415-420.

[11]

Huang Y., Diner A.M., Karnosky D.F. Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer:Larix deciduas [J]. In Vitro Cell Dev Biol., 1991, 27: 201-207.

[12]

Humara J.M., Lopez M., Ordas R.J. Agrobacterium rhizogenes-mediated transformation of Pinus pinea L. cotyledons: an assessment of factors influencing the efficiency of uidA gene transfer [J]. Plant Cell Rep., 1999, 19: 51-58.

[13]

Lida A., Yamashida T., Yamada Y., Morikawa H. Efficiency of particle-bombardment-mediated transformation is influenced by cell stage in synchronized cultured cells of tobacco Plant Physiol., 1991, 97: 1585-1587.

[14]

Klimaszewska K., Devantier Y., lachance D., Lelu M.A., Charest P.J. Larix laricina (tamarack): somatic embryogenesis and genetic transformation [J]. Can J. For. Res., 1997, 27: 538-550.

[15]

Levee V., Lelu M.A., Jouanin L., Cornu D., Pilate G. Agrobacterium tumefaciens-mediated transformation of hybrid larch (Larix kaempferi × L. decidua) and transgenic plant regeneration [J]. Plant Cell Rep., 1997, 16: 680-685.

[16]

Li T.Y., Tian Y.C., Qing X.F. Studies on high-efficient insect resistance transgenic tobacco [J]. China Sinica. (B), 1994, 24: 276-268.

[17]

McCown B.H., McCabe D.E., Russell D.R., Robison D.J., Barton K.A., Raffa K.F. Stable transformation ofPopulus and incorporation of pest resistance by discharge particle acceleration [J]. Plant Cell Rep., 1991, 9: 950-954.

[18]

Perlak F.J., Fuchs R.L., Dean D.A., McPherson S.L., Fischoff D.A. Modification of the coding sequence enhances plant expression of insect control proteins [J]. Proc Natl Acad Sci USA, 1991, 88: 3324-3328.

[19]

Perlak F.J., Stone T.b, Muskopf Y.M., Petersen L.J., Parker G.B., McPherson S.A., Wyman J., Love S., Reed G., Biever D., Fischoff D.A. Genetically improved potatoes: protection from damage by Colorado potato beetle [J]. Plant Mol Biol., 1993, 22: 313-321.

[20]

Sambrook J, Fritsch E.F., Mamiatis T. Molecular Cloning: a laboratory manual, 1989 2nd ed New York: Cold Spring Harbor

[21]

Schuler TH., Poppy G.M., Kerry B.R., Denholm L. Insectresistant transgeic plants [J]. Trends Biotechnol., 1998, 16: 168-175.

[22]

Shin D.I., Podila G.K., Huang Y., Karnosky D.F. Transgenic larch expressing genes for herbicide and insect resistance [J]. Can. J. For. Res., 1994, 24: 2059-2067.

[23]

Stewart CN., Adang M.J., All J.N., Boerma H.R., Cardineau G., Tucker D., Parrott W.A. Genetic transformation, recovery and characterization of fertile soybean transgenic for a syntheticBacillus thuringiesis crylA(c) gene [J]. Plant Physiol, 1996, 112: 121-129.

[24]

Tang W., Ouyang F., Guo Z.C. Plant regeneration through organogenesis from callus induced from mature zygotic embryos of loblolly pine [J]. Plant Cell Rep., 1998, 17: 557-560.

[25]

Tzfira T., Yamitzky O., Vainstein A., Altman A. Agrobacterium rhizogenes-mediated DNA transfer inPinus halepensis Mill [J]. Plant Cell Rep., 1996, 16: 26-31.

[26]

Walter C., Grace L.J., Wagner A., White D.W.R., Walden A.R., Donaldson S.S., Hinton H., Gardner R.C., Smith D.R. Stable transformation and regeneration of transgenic plants ofPinus radiata D. Don [J]. Plant Cell Rep., 1998, 17: 460-469.

[27]

Walter C., Grace L., Donaldson S.S., Moody J., Gemmell J.E., van der Maos S., Kvaalen H., Lonneborg A. An efficient Biolistic transformation protocol forPicea abies embryogenic tissue and regeneration of transgenic plants [J]. Can. J. For. Res., 1999, 29: 1539-1546.

[28]

Xiang Y., Wong W.K.R., Ma M.C., Wong R.S.C. Agrobacterium-mediated transformation ofBrassica campestris spp. Parachinensis with syntheticBacillus thuringiensis cry1Ab and cry1Ac genes [J]. Plant Cell Rep., 2000, 19: 251-256.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/