Advances of study on atmospheric methane oxidation (consumption) in forest soil

Wang Chen-rui , Shi Yi , Yang Xiao-ming , Wu Jie , Yue Jin

Journal of Forestry Research ›› 2003, Vol. 14 ›› Issue (3) : 230 -238.

PDF
Journal of Forestry Research ›› 2003, Vol. 14 ›› Issue (3) : 230 -238. DOI: 10.1007/BF02856837
Article

Advances of study on atmospheric methane oxidation (consumption) in forest soil

Author information +
History +
PDF

Abstract

Next to CO2, methane (CH4) is the second important contributor to global warming in the atmosphere and global atmospheric CH4 budget depends on both CH4 sources and sinks. Unsaturated soil is known as a unique sink for atmospheric CH4 in terrestrial ecosystem. Many comparison studies proved that forest soil had the biggest capacity of oxidizing atmospheric CH4 in various unsaturated soils. However, up to now, there is not an overall review in the aspect of atmospheric CH4 oxidation (consumption) in forest soil. This paper analyzed advances of studies on the mechanism of atmospheric CH4 oxidation, and related natural factors (Soil physical and chemical characters, temperature and moisture, ambient main greenhouse gases concentrations, tree species, and forest fire) and anthropogenic factors (forest clear-cutting and thinning, fertilization, exogenous aluminum salts and atmospheric deposition, adding biocides, and switch of forest land use) in forest soils. It was believed that CH4 consumption rate by forest soil was limited by diffusion and sensitive to changes in water status and temperature of soil. CH4 oxidation was also particularly sensitive to soil C/N, Ambient CO2, CH4 and N2O concentrations, tree species and forest fire. In most cases, anthropogenic, disturbances will decrease atmospheric CH4 oxidation, thus resulting in the elevating of atmospheric CH4. Finally, the author pointed out that our knowledge of atmospheric CH4 oxidation (consumption) in, forest soil was insufficient. In order to evaluate the contribution of forest soils to atmospheric CH4 oxidation and the role of forest played in the process of global environmental change, and to forecast the trends of global warming exactly, more researchers need to studies further on CH4 oxidation in various forest soils of different areas.

Keywords

Atmospheric methane / Oxidation / Global warming / Forest soil / Sink / S718.51 / A

Cite this article

Download citation ▾
Wang Chen-rui, Shi Yi, Yang Xiao-ming, Wu Jie, Yue Jin. Advances of study on atmospheric methane oxidation (consumption) in forest soil. Journal of Forestry Research, 2003, 14(3): 230-238 DOI:10.1007/BF02856837

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ball B. C., Dobbie K. E., Parker J. P. et al. The influence of gas transport and porosity on methane oxidation in soils [J]. J. Geoph. Res., 1997, 102(D19): 23301-23308.

[2]

Ball B. C., McTaggart I. P., Watson C. A. Influence of organic ley-arable management and afforestation in sandy loam to clay loam soils on fluxes of N2O and CH4 in Scotland. Agriculture [J]. Ecosys. & Environ., 2002, 90: 305-317.

[3]

Bedard C., Knowles R. Physiology, biochemistry, and specific inhibitors of CH4, NH4 +, and CO oxidation by methanotrophs and nitrifiers Microbil [J]. Rev., 1989, 53: 68-84.

[4]

Bender M., Conrad R. Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios [J]. FEMS Microbiol. Ecol., 1992, 101: 261-270.

[5]

Bender M., Conrad R. Kinetics of methane oxidation in oxic soils [J]. Chemosphere, 1993, 26(1–4): 687-696.

[6]

Benstead J., King G.M., Williams H.G. Methanol promotes atmospheric methane oxidation by methanotrophic cultures and soils [J]. Appl. & Environ. Micro., 1998, 64(3): 1091-1098.

[7]

Billings S.A., Richter D.D., Yarie J. Sensitivity of soil methane fluxes to reduced precipitation in boreal forest soils [J]. Soil Biol & Biochem, 2000, 32: 1431-1441.

[8]

Boecks P., Cleemput O. V., Meyer T. The influence of land use and pesticides on methane oxidation in some Belgian soils [J]. Biology and Fertility of Soils, 1998, 27(3): 293-298.

[9]

Born M., Dorr H., Levin I. Methane consumption in aerated soils of the temperate zone [J]. Tellus, 1990, 42B: 2-8.

[10]

Bradford M.A., Ineson P., Wookey P.A. et al. Soil CH4 oxidation: response to forest clearcutting and thinning [J]. Soil Biol & Biochem, 2000, 32: 1035-1038.

[11]

Bradford M.A., Ineson P., Wookey P.A. et al. Role of CH4 oxidation, production and transport in forest soil CH4 flux [J]. Soil Biol. & Biochem., 2001, 33(12–13): 1625-1631.

[12]

Bradford M.A., Ineson P., Wookey P.A. et al. The effects of acid nitrogen and acid sulphur deposition on CH4 oxidation in a forest soil: a laboratory study [J]. Soil Biol. & Biochem., 2001, 33(12–13): 1695-1702.

[13]

Brumme R., Borken W. Site variation in methane oxidation as affected by atmospheric deposition and type of temperate forest ecosystem. Global Biogeochem [J]. Cycles, 1999, 13(2): 493-501.

[14]

Butterbach-Bahl K., Breuer L., Gasche R. et al. Exchange of trace gases between soils and the atmosphere in Scots pine forest ecosystems of the northeastern German lowlands: 1. Fluxes of N2O, NO/NO2 and CH4 at forest sites with different N-deposition [J]. For. Ecol. Manag., 2002, 167: 123-134.

[15]

Castro M.S., Steudler P.A., Melillo J.M. Factors controlling atmospheric methane consumption by forest soils [J]. Global Biogeochem. Cycles, 1995, 9: 1-10.

[16]

Castro M.S., Steudler P.A., Mello J.M. et al. Exchange of N2O and CH4 between the atmosphere and soil in spruce-fir forests in the northeastern United States [J]. Biogeochem., 1993, 18: 119-136.

[17]

Czepiel P.M., Crill P.M., Harriss R.C. Environmental factors influencing the variability of methane oxidation in temperate zone soils J. Geoph [J]. Res., 1995, 100(D5): 9359-9364.

[18]

Delmas R.A., Marenco J.P., Tathy B.C. et al. Sources and sinks of methane in the African savanna: CH4 emissions from biomass burning [J]. J. Geophys. Res., 1991, 96: 7287-7299.

[19]

Dobbie K.E., Smith K.A. Comparison of oxidation rates in woodland, arable and set aside soils [J]. Soil Biol. Biochem, 1996, 28(10/11): 1357-1365.

[20]

Dobbie K.E., Smith K.A., Prieme A. et al. Effect of land use on the rate of methane uptake by surface soils in northern Europe [J]. Asmosph. Environ., 1996, 30: 1005-1011.

[21]

Yunshe Dong, Gongbing Peng, Jun Li Spatio-temporal characteristic of CO2, CH4 and N2O emission in temperate forest soils [J]. Acta Geographica Sinica, 1996, 51: 120-128.

[22]

Yunshe Dong, Yuchun Qi, Ji Luo et al. Experimental study on N2O and CH4 fluxes from the dark coniferous forest zone soil of Gongga Mountain [J]. China, Science in China Series D, 2003, 46(3): 285-295.

[23]

Dörr H., Katruff L., Levin I. Soil texture parameterization of the methane uptake in aerated soils [J]. Chemosphere, 1992, 26: 697-713.

[24]

Dunfield P., Knowles R. Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol [J]. Appl. & Environ. Microbil., 1995, 61: 3129-3135.

[25]

Glodman M.B., Groffman P.M., Pouyat R.V. et al. CH4 uptake and N availability in forest soils along an urban to rural gradient [J]. Soil Biol. Biochem., 1995, 27(3): 281-286.

[26]

Gulledge J., Doyle A.P., Schimel J.P. Different NH4 +-inhibition patterns of soil CH4 consumption: A result of distinct CH4-oxidizer populations across sites [J]? Soil Biol. Biochem., 1997, 29(1): 13-21.

[27]

Hanson R.S., Hanson T.E. Methanotrophic bacteria. Microbiol [J]. Rev., 1996, 60: 439-471.

[28]

Harriss R.C., Seebacher D.I., Day F.P. Methane flux in the Great Dismal Swarmp [J]. Nature, 1982, 297: 673-674.

[29]

Houghton J.T., Filho L.G.M., Bruce J. et al. Climate Change 1994 [M], 1994 Cambridge: Cambridge University Press

[30]

IPCC et al. Houghton J.T., Callender B.A., Varney S.K. et al. Climate change 1992 The supplementary report to the IPCC scientific assessment, 1992 Cambridge: Cambridge University Press 6-51.

[31]

IPCC et al. Houghton J.T., Ding Y., Griggs D.J. et al. Climate Change 2001 [M] the Scientific Basis, Intergovernmental Panel on Climate Change, 2001 Cambridge: Cambridge University Press 41-42.

[32]

Jensen S., Holmes A.J., Olsen R.A. et al. Detection of methane oxidizing bacteria in forest soil by monooxgenase PCR amplification [J]. Microb. Ecol., 2000, 39(4): 282-289.

[33]

Jensen S., Rrieme A., Bakken L. Methanol improves methane uptake in starved methanotrophic microorganisms [J]. Appl. & Envir. Micr., 1998, 64(3): 1143-1146.

[34]

Kagotani Y., Hamabata E., Nakajima T. Seasonal and spatial variations and the effects of clear-cutting in the methane absorption rates of a temperate forest soil [J]. Nutrient Cycling in Agroecosystems, 2001, 59(2): 169-175.

[35]

Kähkönen M.A., Wittmann C., Ilvesniemi H. et al. Mineralization of detritus and oxidation of methane in acid boreal coniferous forest soils: seasonal and vertical distribution and effects of clear-cut [J]. Soil Biology & Biochemistry, 2002, 34: 1191-1200.

[36]

Keller M., Goreau T.J., Wofsy S.C. et al. Production of nitrous oxide and consumption of methane by forest soils [J]. Geophys. Res. Lett., 1983, 10: 1156-1159.

[37]

Keller M., Kaplan W.A., Wofsy S.C. Emissions of N2O, CH4 and CO2 from tropical forest soils [J]. J. Geophys. Res. Atmosph., 1986, 91(11): 11791-11802.

[38]

King G.M., Schell S. Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption [J]. Nature, 1994, 370: 282-284.

[39]

Klemedtsson K.A., Klemedtsson L. Methane uptake in Swedish forest soil in relation to liming and extra N-deposition [J]. Biol. & Fertil. Soils, 1997, 25(3): 296-301.

[40]

Lessard R., Rochette P., Topp E. et al. Methane and carbon dioxide fluxes from poorly drained adjacent cultivated and forest sites [J]. Can. J. Soil Sci., 1994, 74: 139-146.

[41]

Levine J.S. Biomass burning: a driver for global change [J]. Environ. Sci. & Technol., 1995, 29A: 120-125.

[42]

MacDonald J.A., Skiba U., Sheppard L.J. et al. Soil environmental variables affecting the flux of methane from a range of forest, moorland and agricultural soils [J]. Biogeochem., 1996, 34: 113-132.

[43]

Mancinelli R.L. The regulation of methane oxidation in soil [J]. Annu. Rev. Microbiol., 1995, 49: 581-605.

[44]

Menyailo O.V., Hungate B.A. Interactive effects of tree species and soil moisture on methane consumption [J]. Soil Biology & Biochemistry, 2003, 35(2003): 625-628.

[45]

Mogilevskii G.A. Microbiological investigation in connection with gas surveying [J]. Razvedka Nedr, 1938, 8: 59-68.

[46]

Mogilevskii G.A. The bacterial method of prospecting for oil and natural gases [J]. Razvedka Nedr, 1940, 12: 32-43.

[47]

Morishita T., Hatano R. Methane emission from dam-lake and methane uptake by forest soil surrounding the lake [J]. Japanese J. Soil Sci. Plant Nutri., 1999, 70(6): 791-798.

[48]

Munz E. Zur Physiologie der Mehanbakerien (M), 1915 Halle: Friedrichs Universitat 61-61.

[49]

Nanba K., King M.G. Response to atmospheric methane consumption by Maine forest soil to exogenous Aluminum salts [J]. Appl. & Environ. Microbiol., 2000, 66(9): 3674-3679.

[50]

Nesbit S.P., Breitenbeck G.A. A laboratory study of factors influencing methane uptake by soils [J]. Agri. Environ., 1992, 41: 39-54.

[51]

Nobuaki T., Chisato T., Shigehiro I. et al. Methane flux and regulatory variables in soils of three equal-aged Japanese cypress (Chamaecyparis obstusa) forests in central Japan [J]. Soil boil. & Biochem., 2003, 35: 633-641.

[52]

Ojima D.S., Valentine D.W., Mosier A.R. et al. Effect of land use change on methane oxidation in temperate forest and grassland soils [J]. Chemosphere, 1993, 26: 675-685.

[53]

Phillips R.L., Whalen S.C., Schlesinger W.H. Response of soil Methanotrophic activity to carbon dioxide enrichment in a North Carolina coniferous forest [J]. Soil Biol & Biochem, 2001, 33: 793-800.

[54]

Prieme A., Christensen S, Galle B. et al. Spatial variability of CH4 uptake in a Danish forest siol and its relation to different measurement techniques [J]. Atmo Envi, 1996, 30(9): 1375-1379.

[55]

Prieme A., Chrisensen S. Methane uptake by a selection of soils in Ghana with different land use [J]. J Geophy Res, 1999, 104(D19): 23617-23622.

[56]

Prieme A., Ekelund F. Five pesticides decreased oxidation of atmospheric methane in a forest soil [J]. Soil Biol & Biochem, 2001, 33: 831-835.

[57]

Ready D.S., Radajewski S., Murrell J.C. et al. Effects of land-use on the activity and diversity of methane oxidizing bacteria in forest soils [J]. Biology & Biochemistry, 2001, 33: 1613-1623.

[58]

Ridgwell A.J., Marshall S.J., Gregson K. Consumption of atmospheric methane by soils: A process-based model Global Biogeochem [J]. Cycles, 1999, 13(1): 59-70.

[59]

Rigler E., Boltenstern S.Z. Oxidation of ethylene and methane in forest soils-effect of CO2 and mineral nitrogen [J]. Geodema, 1999, 90(1–2): 147-159.

[60]

Roslev P., Iversen N., Henriksen K. Oxidation and assimilation of atmospheric methane by soil methane oxidizers [J]. Appl. & Environ. Microbiol, 1997, 63(3): 874-880.

[61]

Saari A., Martikainen P.J. Differential inhibition of methane oxidation and nitrification in forest soils by dimethyl sulfoxide (DMSO) [J]. Soil Biol. & Biochem., 2001, 33(11): 1567-1570.

[62]

Schnell S., King GM. Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils [J]. Appl. & Environ. Microbiol., 1994, 60(10): 3514-3521.

[63]

Seiler W., Conrad R., Scharffe D. Field studies on methane emission from termite nests into the atmosphere, measurements of methane uptake by tropical soils [J]. J. Atmosph. Chem., 1984, 1: 171-186.

[64]

Hong Shen, Zhihong Cao Greenhouse gases and their ecological effects [J]. Eco-Agriculture Res., 1998, 6(3): 21-24.

[65]

Shigehiro I., Tadashi S., Kazuhiro I. Methane oxidation in Japanese forest soils [J]. Soil Biology and Biochemistry, 2000, 32: 769-777.

[66]

Simpson I.J., Edwards G.C., Thurtell G.W. Variations in methane and nitrous oxide mixing ratios at the southern boundary of a Canadian boreal forest [J]. Atmospheric Environment, 1999, 33: 1141-1150.

[67]

Singh J.S., Singh S., Raghubanshi A.S. et al. Effect of soil nitrogen, carbon and moisture on methane uptake by dry tropical forest soils [J]. Plant and Soil, 1997, 196: 115-121.

[68]

Sitaula B.K., Bakken L.R., Abrahamsen G. CH4 uptake by temperate forest soil: Effect of N input and soil acification [J]. Soil Biol. Biochem., 1995, 27(7): 871-880.

[69]

Smith K.A., Dobbie K.E., Ball B.C. et al. Oxidation of atmospheric methane in northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink [J]. Global Change Biology, 2000, 6: 791-803.

[70]

Söhngen N.L. Über Bakterien, welche Methan als Kohlenstoffnauhrung Engergiequelle gebrauchen [J]. Zentr. Bateriol. Parasitenk. Abt. II, 1906, 15: 513-517.

[71]

Steinkamp R., Butterbach-Bahl K., Papen H. Methane oxidation by soils of an N limited and N fertilized spruce forest in the black forest, Germany [J]. Soil Biol. & Biochem., 2001, 33: 145-153.

[72]

Steudler P.A., Bowden R.D., Melillo J.D. et al. Influence of nitrogen fertilization on methane uptake in temperate forest soils [J]. Nature, 1989, 341: 314-316.

[73]

Striegl R.G. Diffusional limits to the consumption of atmospheric methane by soils [J]. Chemospere, 1993, 26(1–4): 715-720.

[74]

Xiangyang Sun CH4 emission flux of forest soils in lower mountain area, Beijing [J]. Soil & Environ. Sci., 2000, 9(3): 173-176.

[75]

Tamai N., Takenaka C., Ishizuka S. et al. Methane flux and regulatory variables in soils of three equal-aged Japanese cypress (Chamaecyparis obtusa) forests in central Japan [J]. Soil Biol. & Biochem., 2003, 35: 633-641.

[76]

Topp E. Effects of selected agrochemicals on methane oxidation by an organic agriculture soil [J]. Can. J. Soil. Sci., 1993, 73: 287-291.

[77]

Xiaoke Wang, Zongwei Feng, Yahui Zhuang CO2, CO and CH4 emission from forest fires in China [J]. Scientia Silvae Sinicae, 2001, 37(1): 90-95.

[78]

Xiaoke Wang, Yahui Zhuang, Zongwei Feng Emission of carbon-containing gases released from forest fire [J]. Adv. Environ. Sci., 1998, 6(4): 1-15.

[79]

Zhiping Wang, Ineson P. Methane oxidation in a temperate coniferous forest soil: effects of inorganic N [J]. Soil Biology & Biochemistry, 2003, 35: 427-433.

[80]

Watson R.T., Rodhe H., Oeschger H. et al. Houghton J.T., Jekins G.J., Ephraums J.J. et al. Greenhouse gases and aerosols [C] Climate Change, the IPCC Scientific Assessment, 1990 Cambridge: Cambridge Unoversity Press 1-40.

[81]

Whalen S.C., Reeburgh W.S., Sandbeck K.A. Rapid methane oxidation in a landfill cover soil [J]. Appl. Environ. Microbiol., 1990, 56: 3405-3411.

[82]

Whalen S.C., Reeburgh W.S. Moisture and temperature sensitivity of CH4 oxidation in boreal soils [J]. Soil Biol. Biochem., 1996, 28(10/11): 1271-1281.

[83]

Whalen S.C., Reeburgh W.S., Barber V.A. Oxidation of methane in boreal forest soils: a comparison of seven measures [J]. Biogeochem., 1992, 16: 181-211.

[84]

Whittenbury R., Dalton H. et al. Starr M.P., Trüper H.G., Balows A. et al. The methylotrophic bacteria [C] The Prokaryotes, 1981 Berlin: Northeast Forestry University and Ecological Society of China 894-902.

[85]

Whittenbury R., Krieg N.R. Krieg N.R., Holt J.G. Methylococcacea fam [C] Bergey’s manual of systematic bacteriology, vol. 1, 1984 Baltimore: The Williams & Wilkins Co. 256-262.

[86]

Whittenbury R., Philips K.C., Wilkinson J.G. Environment, isolation and some properties of methane utilizing bacteria [J]. J Gen. Microbiol, 1970, 61: 205-218.

[87]

Willison, T.W., Goulding, K.W.T., Powlson, D.S. 1995. Effect of land-use change and methane mixing ratio on methane uptake from United Kindom soil [J] Global Change Biol, 101–104.

[88]

Hui Xu, Guanxiong Chen, Guohong Huang et al. Factors controlling N2O and CH4 fluxes in mixed broad-leaved/Korean pine forest of Changbai Mountain, China [J]. Journal of Forestry Research, 1999, 10(4): 214-218.

[89]

Hui Xu, Guanxiong Chen, Chengxin Ma A preliminary study on N2O and CH4 emissions from different soils on northern slope of Changbai Mountain [J]. Chin. J. Appl. Ecol., 1995, 6(4): 373-377.

[90]

Min Zhang, Haiqing Hu The effect of forest fire on Microorganism in soil [J]. Journal of Northeast Forestry University, 2002, 30(4): 44-46.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/