Status of microsatellites as genetic markers in cervids

Zu Yan-chun , Pan Zi-chen , Xu Zhi-ru , Yang Shu-hui , Jin Yu , Bai Su-ying

Journal of Forestry Research ›› 2001, Vol. 12 ›› Issue (1) : 55 -58.

PDF
Journal of Forestry Research ›› 2001, Vol. 12 ›› Issue (1) : 55 -58. DOI: 10.1007/BF02856802
Article

Status of microsatellites as genetic markers in cervids

Author information +
History +
PDF

Abstract

Microsatellite loci distributing on genome randomly act as effective genetic markers. To date, about 200 microsatellite loci were found in cervids by transferring microsatellite PCR primers derived in bovine, ovine to cervids, as well as a few loci derived directly from deer microsatellite library. These loci have been used in parentage determination, genetic diversity and population structure, population introgression, as genetic marker gestation length and wintering survivalet al. However, microsatellite loci presently found are untouchable to the demand of application. Future work should include: 1) isolating a large number of cervine microsatellite loci, 2) constructing genetic and physical maps of microsatellite loci. So that microsatelites have a strong base for advanced applications in deer.

Keywords

Deer / Cervids / Microsatellite / Genetic marker / Q753 / Q959.5 / A

Cite this article

Download citation ▾
Zu Yan-chun, Pan Zi-chen, Xu Zhi-ru, Yang Shu-hui, Jin Yu, Bai Su-ying. Status of microsatellites as genetic markers in cervids. Journal of Forestry Research, 2001, 12(1): 55-58 DOI:10.1007/BF02856802

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bowling A.T., Eggleston-Stott M.L., Byrns G., Clark R.S., Dileanis S., Wictum E. Validation of microsatellite markers for routine horse parentage testing [J]. Animal Genetics, 1997, 28: 247-252.

[2]

Broders H.G., Mahoney S.P., Montevecchi W.A., Davidson W.S. Population genetic structure and the effect of founder events on the genetic variability of moose,Alces alces, in Canada [J]. Molecular Ecology, 1999, 8: 1309-1315.

[3]

Chin ECL Maize simple repetitive DNA sequences: abundance and allele variation [J]. Genome, 1996, 39: 866-873.

[4]

Coulson T.N., Albon S.D., Pemberton J.M., Slate J., Guinness F.E., Clutton Brock T.H. Genotype by environment interactions in winter survival in red deer [J]. Journal of Animal Ecology, 1998, 67(3): 434-445.

[5]

Dallimer M. Cross-species amplification success of avian microsatellites in the redbilled quelea (Quelea quelea) [J]. Molecular Ecology, 1999, 8: 695-698.

[6]

DeWoody J.A., Honeycutt R.L., Skow L.C. Microsatellite markers in white-tailed deer [J]. Journal of Hereadity, 1995, 86(4): 317-319.

[7]

Engel S.R., Linn R.A., Taylor J.E., Davis S.K. Conservation of microsatellite loci across species of artiodactyls: implications for population studies [J]. Journal of Mammalogy, 1996, 77(2): 504-518.

[8]

Flagstad O., Roed K., Stacy J.E., Jakobsen K.S. Reliable noninvasive genotyping based on excremental PCR of nuclear DNA purified with a magnetic bead protocol [J]. Molecular Ecology, 1999, 8(5): 879-883.

[9]

Glowatzki-Mullis M.L., Gaillard C., Wigger G., Fries R. Microsatellite-based parentage control in cattle [J]. Animal Genetics, 1995, 26: 7-12.

[10]

Goodman S.J., Barton N.H., Swanson G., Abernethy K., Pemberton J.M. Introgression through rare hybridization: a genetic study of a hybrid zone between red and sika deer (Genus Cervus) in Argyll, Scotland [J]. Genetics, 1999, 152(1): 355-371.

[11]

Goosen G.J., Fennessy P.F., Mathias H.C., Pearse A.J., McEwan K.M., Tate M.L. Gestation length in Pere David’s X red deer hybrids [J]. Proceedings of the New Zealand Society of Animal Production, 1997, 57: 225-225.

[12]

Hammond R.L., Saccheri I.J., Ciofi C., Coote T., Funk S.M., McMillan O., Bayes M.K., Taylor E., Bruford M.W. Karp Anela, Isaac Peter G., Ingram David S. Isolation of microsatellite markers in animals. Molecular Tools for Screening Biodiversity [M], 1998 London: Chapman & Hall 279-285.

[13]

Kuhn R., Anastassiadis C., Pirchner F. Transfer of bovine microsatellites to the cervine (Cervus elaphus) [J]. Animal Genetics, 1996, 27: 199-201.

[14]

Lee, HC. 1996. Collection and preservation of DNA evidence. In: Proceedings from the 7th International Symposium on Human Identification [C]. Promega Corporation. 1997. 39–45.

[15]

Lorente, M., Lorente, J.A., Sweet, D.J., Alvarez, J.C., Valenzuela, A., Villanueva, E. 1996. Forensic analysis of saliva stains: dealing with minimal amount of DNA. In: Proceedings from the 7th International Symposium on Human Identification [C]. Promega Corporation, 1997. 27–33.

[16]

Menotti-Raymond M., David V.A., Lyons L.A., Schaffer A., Tomlin J.F., Hutton M.K., O’Brien S.J. A genetic linkage map of microsatellites in the domestic cat (Felis catus) [J]. Genomics, 1999, 57: 9-23.

[17]

Moore S., Sargeant L.L., King T.J., Mattick J.S., Georges M., Hetzel D.J.S. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species [J]. Genomics, 1991, 10: 654-660.

[18]

Okada A., Tamate H.B. Pedigree analysis of the sika deer (Cervus nippon) using microsatellite markers [J]. Zoological Science, 2000, 17: 335-340.

[19]

Roed K.H. Microsatellite variation in Scandinavian Cervidae using primers derived from Bovidae [J]. Hereditas Landskrona, 1998, 129(1): 19-25.

[20]

Roed K.H., Midthjell L. Microsatellites in reindeer,Rangifer tarandus, and their use in other cervids. [J]. Molecular Ecology, 1998, 7(12): 1773-1776.

[21]

Slate J., Coltman D.W., Goodman S.J., MacLean I., Pemberton J.M., Williams J.L. Bovine microsatellite loci are highly conserved in red deer (Cervus elaphus), sika deer (Cervus nippon) and Soay sheep (Ovis aries) [J]. Animal Genetics, 1998, 29(4): 307-315.

[22]

Talbot J., Hargh J., Plante Y. A parentage evaluation test in North American elk (wapiti) using microsatellites of ovine and bovine origin [J]. Animal Genetics, 1996, 27: 117-119.

[23]

Tate M.L., Anderson R.M., AcEwan K.M., Goosen G.J., Pearse A.J. Genetic analysis of farmed deer hybrids [J]. Acta Veterinaria Hungarica, 1998, 46(3): 329-340.

[24]

Tautz D. Hypervariability of simples sequences as general source for polymorphic DNa markers [J]. Nucleic Acid Research, 1989, 17: 6463-6471.

[25]

Weber J.L., Wong C. Mutation of human short tandem repeats [J]. Human Molecular Genetics, 1993, 2: 1123-1128.

[26]

Wilson G.A., Strobeck C. The isolation and characterization of microsatellite loci in bison, and their usefulness in other artiodactyls [J]. Animal Genetics, 1999, 30(3): 226-227.

[27]

Wilson G.A., Strobeck C., Wu L., Coffin J.W. Characterization of microsatellite loci in caribouRangifer tarandus, and their use in other artiodactyls [J]. Molecular Ecology, 1997, 6(7): 697-699.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/