The use ofBacillus thuringiensis on Forest Integrated Pest Management

Li Gui-ming , Zhang Xiang-yue , Wang Lu-quan

Journal of Forestry Research ›› 2001, Vol. 12 ›› Issue (1) : 51 -54.

PDF
Journal of Forestry Research ›› 2001, Vol. 12 ›› Issue (1) : 51 -54. DOI: 10.1007/BF02856801
Article

The use ofBacillus thuringiensis on Forest Integrated Pest Management

Author information +
History +
PDF

Abstract

Bacillus thuringiensis is a major microbial insecticide and a source of genes encoding several proteins toxic to insects. In this paper the authors give a brief summary ofBacillus thuringiensis used on the integrated pest management in forestry. The derivatives of Bt strain HD1 subspkurstaki have been widely used to control the forest pests such as the gypsy moth (Lymantria dispar), spruce budworm (Choristoneura fumiferana), the pine processionary moth (Thaumetopoea pityocampa), the European pine shoot moth (Rhyacionia buoliana) and the nun moth (Lymantria monacha). Some progresses of transferring and expressing Bt toxin gene in forest trees are offered with a discussion on the limits and future prospects of using Bt products in forestry.

Keywords

Bacillus thuringiensis / Integrated pest management / Forest protection / S763.306.4 / A

Cite this article

Download citation ▾
Li Gui-ming, Zhang Xiang-yue, Wang Lu-quan. The use ofBacillus thuringiensis on Forest Integrated Pest Management. Journal of Forestry Research, 2001, 12(1): 51-54 DOI:10.1007/BF02856801

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrews R.E., Faust R.M., Wabiko H., Raymond K.C., Bulla L.A. The biotechnology ofBacullus thuringeensis [J]. CRC Crit. Rev. Biotechnol., 1987, 6: 163-232.

[2]

Bryant J.E., Yendol W.G. Evaluation of the influence of droplet size and density ofBacillus thuringiensis against gypsy moth larvae (Lepidotera: Lymantriidae) [J]. J. Econ. Entomol., 1988, 81(1): 130-134.

[3]

Bryant J.E. Commercial production and formulation ofBacillus thuringiensis [J]. Agric. Ecosys. Environ., 1994, 49: 31-35.

[4]

Cannon R.J.C. Prospects and progress forBacillus thuringiensis-based pesticides [J]. Pestic. Sci., 1993, 37: 331-335.

[5]

Cariton B.C. Development of improved bioinsecticides based onBacillus thuringiensis [C] Pest Control with Enhanced Environmental Safety, 1992 Washingto DC: American Chemical Society 258-266.

[6]

Ying Chen, Yinfan Han, Tian Y.C., Li L., Nie S.J. Study on plant regeneration from Populus deltoids explants transformed with Bt toxin gene [J]. Scientia-Silvae-Sinicae, 1995, 31(2): 97-103.

[7]

Estruch J.J., Carozzi N.B., Desai N., Duck N.B., Warren G.W., Koziel M.G. Transgenic plants: an emerging approach to pest control [J]. Nature Biotechnol., 1997, 15: 137-141.

[8]

Evans H.F., Stoakley J.T., Leather S.R., Watt A.D. Development of an integrated approach to control of pine beauty moth in Scotland [J]. Forest Ecology Manage., 1991, 39: 19-28.

[9]

Feitelson J.S., Payne J., Kim L. Bacillus thuringiensis: insects and beyond [J]. Bio/Technology, 1996, 10: 271-275.

[10]

Gould F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology [J]. Annu. Rev. Entomol., 1998, 43: 701-726.

[11]

Hofte, H. and Whiteley, H.R. 1989. Insecticidal crystal proteins ofBacillus thuringiensis [J]. Microbiol. Rev., 242–255.

[12]

Howe G.T., Goldfarb B., Strauss S.H. Agrobacterium mediated transformation of hybrid poplar suspension cultures and regeneration of transformed plants [J]. Plant Cell Tissue Organ Culture, 1994, 36: 59-71.

[13]

Kleiner K.W., Ellis D.D., McCown B.H., Raffa K.F. Field evaluation of transgenic poplar expressing aBacillus thuringiensis cry1A(a) d-endotoxin gene against forest tent caterpillar (Lepidoptera; Lasiocampidae) and gypsy moth (Lepidoptera; Lymantriidae) following winter dormancy [J]. Environ. Entomol., 1995, 24: 1358-1364.

[14]

Li S.Y., Fitzpatrick S.M., Isman M.B. Susceptibility of different instars of the obliquebanded leafroller (Lepidoptera: Tortricidae) toBacillus thuringiensis var.kurstaki [J]. J. Econ. Entomol., 1995, 88: 610-614.

[15]

Maczuga S.A., Mierzejewski K.J. Droplet size and density effects ofBacillus thuringiensis kurstaki on gypsy moth (Lepidotera: Lymantriidae) larvae [J]. J. Econ. Entomol., 1995, 88(5): 1376-1379.

[16]

Masson L., Bosse M., Prefontaine G., Peloquin L., Lau P.C.K., Brousseau R. Characterization of parasporal crystal toxins ofBacillus thuringiensis subspecies,kurstaki strains HD-1 and HD-2 [C] Analytical Chemistry ofBacillus thuringiensis, ACS Symposium Series, 1990 Washington, DC: ACS 61-69.

[17]

McClintock J.T., Schaffer C.R., Sjoblad R.T. A comparative review of the mammalian toxicity ofBacillus thuringiensis-based pesticides [J]. Pesticide Sci., 1995, 45: 95-105.

[18]

McCown B.H., McCabe D.E., Russell D.R., Robinson D.J., Barton K.A., Raffa K.F. Stable transformation of Populus and incorporation of pest resistance by electrical discharge particle acceleration [J]. Plant Cell Rep., 1991, 9: 590-594.

[19]

Metcalf R.L. Applied entomology in the twenty-first century [J]. Am. Entomol., 1996, 42: 216-227.

[20]

Reardon, R. 1991. Aerial Spraying for Gypsy Moth Control: A Handbook of Technology [R]. United States Department of Agriculture Forest Service, NA-TP-20, 167.

[21]

Roush R.T. Bt-transgenic crops: Just another pretty insecticide or a chance for a new start in resistance management? [J]. Pesticide Sci., 1997, 51: 328-334.

[22]

Schnepf H.E., Whiteley H.R. Cloning and expression of theBacillus thuringiensis Crystal protein gene inEscherichia coli [J]. Proc. Natl. Acad. Sci. USA, 1981, 78: 2893-2897.

[23]

Shin D.I., Podila G.K., Huang Y., Karnosky D.F., Huang Y.H. Transgenic larch expressing genes for herbicide and insect resistance [J]. Can. J. Forest Res., 1994, 24: 2059-2067.

[24]

Strauss S.H., Howe G.T., goldfarb B., Neale D.B., Kinlaw C.S. Prospects for genetic engineering of insect resistance in forest trees: Forest biotechnology [J]. Forest Ecol. Manage., 1991, 43: 181-209.

[25]

Sundaram A., Sundaram K.M.S., Sloane C.L. Spray deposition and persistence of aBacillus thuringiensis formulation on spruce foliage, following aerial application over a northern Ontario forest [J]. J. Environ. Health Sci., 1996, 31: 763-813.

[26]

Tabashnik B.E. Evolution of resistance toBacillus thuringiensis [J]. Annu. Rev. Entomol., 1994, 39: 47-79.

[27]

Tabashnik B.E. Resistance to insecticides, Bacillus, and transgenic plants [J]. Pestic Outlook, 1995, 6(4): 24-27.

[28]

Trumble J.T., Carson W.G., Kund G.S. Economics and environmental impact of a sustainable integrated pest management program in celery [J]. J. Econ. Entomol., 1997, 90: 139-146.

[29]

Van Rie J., McGaughey W.H., Johnson D.E., Barnett B.D., van Malaert H. Mechanism of insect resistance to the microbial insecticideBacillus thuringiensis [J]. Science, 1990, 247: 72-74.

[30]

Zheng J.B., Zhang Y.M., Yang W.Z., Pei D.T., Tian Y.C., Mang K.Q. Plant regeneration from excised leaves of poplar hybrid 741, and transformation with insect resistant Bt toxin gene [J]. J. Hebei Agricultural Univ., 1995, 18: 20-25.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/