Functional genomics: Gene identification via T-DNA mediated gene trap tagging in plants

Tang Wei , Vanessa Samuels , Janet Ogbon , Aquilla McCoy

Journal of Forestry Research ›› 2001, Vol. 12 ›› Issue (1) : 1 -8.

PDF
Journal of Forestry Research ›› 2001, Vol. 12 ›› Issue (1) : 1 -8. DOI: 10.1007/BF02856790
Article

Functional genomics: Gene identification via T-DNA mediated gene trap tagging in plants

Author information +
History +
PDF

Abstract

The fully sequenced genomes of Arabidopsis, rice, tomato, potato, maize, wheat, and soybean offer large amounts of information about cellular and developmental biology. It is a central challenge of genomics to use this information in discovering the function of proteins and identifying developmentally important genes. Although classical genetic approaches to gene identification which rely on disruption of a gene leading to a recognizable phenotype continues to be an extremely successful one, T-DNA mediated gene trap tagging which has been developed that utilize random integration of reporter gene constructs has also proven to be an extremely powerful tool in plant cellular developmental biology. In this review, how gene trap tagging, promoter trap tagging, and enhancer trap tagging detection systems have been applied to plant biology is described and these gene identification techniques could be useful to the plant molecular biology and plant biotechnology community.

Keywords

Genomics / Gene identification / Enhancer trap / Promoter trap / Gene trap / Q78 / S718.4 / A

Cite this article

Download citation ▾
Tang Wei, Vanessa Samuels, Janet Ogbon, Aquilla McCoy. Functional genomics: Gene identification via T-DNA mediated gene trap tagging in plants. Journal of Forestry Research, 2001, 12(1): 1-8 DOI:10.1007/BF02856790

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

André D., Colau D., Schell J., Van Montagu M., Hernalsteens J.P. Gene tagging in plants by a T-DNA insertion mutagen that generates APH(39)II-plant gene fusions [J]. Mol. Gen. Genet., 1986, 204: 512-518.

[2]

Azpiroz-Leehan R., Feldmann K.A. T-DNA insertion mutagenesis in Arabidopsis: Going back and forth [J]. Trends Genet., 1997, 13: 152-156.

[3]

Bancroft I., Dean C. Transposition pattern of the maize elementDs inArabidopsis thaliana [J]. Genetics, 1993, 134: 1221-1229.

[4]

Bancroft I., Bhatt A.M., Sjodin C., Scofield S., Jones J.D.G., Dean C. Development of an efficient two-element transposon tagging system inArabidopsis thaliana [J]. Mol. Gen. Genet., 1992, 233: 449-461.

[5]

Barthels N. et al. Regulatory sequences of Arabidopsis drive reporter gene expression in nematode feeding structures [J]. Plant Cell, 1997, 9: 2119-2134.

[6]

Bechtold N., Ellis J., Pelletier G. In planta Agrobacterium-mediated gene transfer by infiltration of adultArabidopsis thaliana plants [J]. C. R. Acad. Sci. Ser. III Sci. Vie, 1993, 316: 1194-1199.

[7]

Bellen H.J. Ten years of enhancer detection: Lessons from the fly [J]. Plant Cell, 1999, 11: 2271-2281.

[8]

Benfey P.N., Ren L., Chua N.H. The CaMV 35Senhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns [J]. EMBO J., 1989, 8: 2195-2202.

[9]

Berger F., Haseloff J., Schiefelbein J., Dolan L. Positional information in root epidermis is defined during embryogenesis and acts in domains with strict boundaries [J]. Curr. Biol., 1998, 8: 421-430.

[10]

Bouchez D., Camilleri C., Caboche M. A binary vector based on Basta resistance forin planta transformation ofArabidopsis thaliana [J]. C. R. Acad. mation ofArabidopsis thaliana [J]. C. R. Acad. Sci. Ser. III Sci. Vie, 1993, 316: 1188-1193.

[11]

Brand A.H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes [J]. Development, 1993, 118: 401-415.

[12]

Campisi L., Yang Y., Yi Y., Heilig E., Herman B., Cassista A. J., Allen D.W., Xiang H., Jack T. Generation of enhancer trap lines inArabidopsis and characterization of expression patterns in the inflorescence [J]. Plant J., 1999, 17: 699-707.

[13]

Carroll B.J., Klimyuk V.I., Thomas C.M., Bishop G.J., Harrison K., Scofield S.R., Jones J.D.G. Germinal transpositions of the maize elementDissociation from T-DNA loci in tomato [J]. Genetics, 1995, 139: 407-420.

[14]

Casadaban M.J., Cohen S.N. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage:In vivo probe for transcriptional control sequences [J]. Proc. Natl. Acad. Sci. USA, 1979, 76: 4530-4533.

[15]

Das L., Martienssen R.A. Site-selected transposon mutagenesis at thehcf106 locus in maize [J]. Plant Cell, 1995, 7: 287-294.

[16]

Dooner H.K., Belachew A. Transposition of the maize elementAc from thebz-m2 (Ac) allele [J]. Genetics, 1989, 122: 447-457.

[17]

Dooner H.K., Keller J., Harper E., Ralston E. Variable patterns of transposition of the maize elementActivator in tobacco [J]. Plant Cell, 1991, 3: 473-482.

[18]

Favery B., Lecomte P., Gil N., Bechtold N., Bouchez D., Dalmasso A., Abad P. RPE, a plant gene involved in early developmental steps of nematode feeding cells [J]. EMBO J., 1998, 17: 6799-6811.

[19]

Fedoroff N.V., Smith D.L. A versatile system for detecting transposition inArabidopsis [J]. Plant J., 1993, 3: 273-289.

[20]

Feldmann K.A., Marks M.D. Agrobacterium-mediated transformation of germinating seeds ofArabidopsis thaliana: A non-tissue culture approach [J]. Mol. Gen. Genet., 1987, 208: 1-9.

[21]

Ferrándiz C., Gu Q., Martienssen R., Yanofsky M.F. Redundant regulation of meristem identity and plant architecture byFRUITFULL, APETALA1 andCAULIFLOWER [J]. Development, 2000, 127: 725-734.

[22]

Fobert P.R., Miki B.L., Iyer V.N. Detection of gene regulatory signals in plants revealed by T-DNA-mediated fusions [J]. Plant Mol. Biol., 1991, 17: 837-851.

[23]

Goldsbrough A.P., Tong Y., Yoder J.I. Lc as a non-destructive visual reporter and transposition excision marker gene for tomato [J]. Plant J., 1996, 9: 927-933.

[24]

Greenbiatt I.M. A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable elementModulator in maize [J]. Genetics, 1984, 108: 471-485.

[25]

Gu G., Ferrándiz C., Yanofsky M.F., Martienssen R. TheFRUITFULL MADS-box gene mediates cell differentiation duringArabidopsis fruit development [J]. Development, 1998, 125: 1509-1517.

[26]

Haseloff J., Amos B. GFP in plants [J]. Trends Genet., 1995, 11: 328-329.

[27]

Haseloff J., Siemering K.R., Prasher D.C., Hodge S. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenicArabidopsis plants brightly [J]. Proc. Natl. Acad. Sci. USA, 1997, 94: 2122-2127.

[28]

Herman L., Jacobs A., Van Montagu M., Depicker A. Plant chromosome/marker gene fusion assay for study of normal and truncated T-DNA integration events [J]. Mol. Gen. Genet., 1990, 224: 248-256.

[29]

Jefferson R.A., Kavanagh T.A., Bevan M.W. GUS fusions: β-Glucuronidase as a sensitive and versatile gene fusion marker in higher plants [J]. EMBO J., 1987, 6: 3901-3907.

[30]

Jones J.D.G., Carland F., Lim E., Ralston E., Dooner H.K. Preferential transposition of the maize elementActivator to linked chromosomal locations in tobacco [J]. Plant Cell, 1990, 2: 701-707.

[31]

Kearsey S.E., Labib K. MCM proteins: Evolution, properties, and role in DNA replication [J]. Biochim. Biophys. Acta, 1998, 1398: 113-136.

[32]

Kertbundit S., De Greve H., Deboeck F., Van Montagu M., Hernalsteens J.P. In-vivo random β-glucuronidase gene fusions inArabidopsis thaliana [J]. Proc. Natl. Acad. Sci. USA, 1991, 88: 5212-5216.

[33]

Klimyuk V.I., Nussaume L., Harrison K., Jones J.D.G. Novel GUS expression patterns following transposition of an enhancer trapDs element inArabidopsis [J]. Mol. Gen. Genet., 1995, 249: 357-365.

[34]

Koncz C., Martini N., Mayerhofer R., Koncz-Kalman Z., Körber H., Redei G.P., Schell J. High-frequency T-DNA-mediated gene tagging in plants [J]. Proc. Natl. Acad. Sci. USA, 1989, 86: 8467-8471.

[35]

Krysan P.J., Young J.C., Sussman M.R. T-DNA as an insertional mutagen in Arabidopsis [J]. Plant Cell, 1999, 11: 2283-2290.

[36]

Liljegren S.J., Ditta G.S., Eshed Y., Savidge B., Bowman J. L., Yanofsky M.F. SHATTERPROOF MADS-box genes control seed dispersal inArabidopsis [J]. Nature, 2000, 404: 766-770.

[37]

Lindsey K., Wei W., Clarke M.C., McArdle H.F., Rooke L. M., Topping J.F. Tagging genomic sequences that direct transgene expression by activation Cof a promoter trap in plants [J]. Transgenic Res., 1993, 2: 33-47.

[38]

Liu Y.-G., Mitsukawa N., Cosumi T., Whittier R.F. Efficient isolation and mapping ofArabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR [J]. Plant J., 1995, 8: 457-463.

[39]

Lloyd A.M., Walbot V., Davis R.W. Arabidopsis andNicotiana anthocyanin production activated by maize regulatorsRandC1 [J]. Science, 1992, 258: 1773-1775.

[40]

Machida C., Onouchi H., Koizumi J., Hamada S., Semiarti E., Torikai S., Machida Y. Characterization of the transposition pattern of theAc element inArabidopsis thaliana using endonuclease I-Scel [J]. Proc. Natl. Acad. Sci. USA, 1997, 94: 8675-8680.

[41]

Malamy J.E., Benfey P.N. Organization and cell differentiation in lateral roots ofArabidopsis thaliana [J]. Development, 1997, 124: 33-44.

[42]

Mandel M.A., Yanofsky M.F. The ArabidopsisAGL8MADS box gene is expressed in inflorescence meristems and is negatively regulated byAPETALA1 [J]. Plant Cell, 1995, 7: 1763-1771.

[43]

Martienssen R.A. Functional genomics: Probing plant gene function and expression with transposons [J]. Proc. Natl. Acad. Sci. USA, 1998, 95: 2021-2026.

[44]

Meinke D.W. Embryonic mutants inArabidopsis thaliana [J]. Dev. Genet., 1991, 12: 382-392.

[45]

Meinke D.W., Cherry J.M., Dean C., Rounsley S.D., Koornneff M. Arabidopsis thaliana: A model plant for genome analysis Science [J], 1998, 282: 662-682.

[46]

Nussaume L., Harrison K., Klimyuk V., Martienssen R., Sundaresan V., Jones J.D. Analysis of splice donor and acceptor site function in a transposable gene trap derived from the maize elementActivator [J]. Mol. Gen. Genet., 1995, 249: 91-101.

[47]

Osborne B.I., Baker B. Movers and shakers: Maize transposons as tools for analyzing other plant genomes [J]. Curr. Opin. Cell Biol., 1995, 7: 406-413.

[48]

Osborne B.I., Corr C.A., Prince J.P., Hehl R., Tanksley S.D., McCormick S., Baker B. Ac transposition from a T-DNA can generate linked and unlinked clusters of insertions in the tomato genome [J]. Genetics, 1991, 129: 833-844.

[49]

Parinov S., Sevugan M., Ye D., Yang W.-C., Kumaran M., Sundaresan V. Analysis of flanking sequences fromDissociation insertion lines: A database for reverse genetics in Arabidopsis [J]. Plant Cell, 1999, 11: 2263-2270.

[50]

Roe J.L., Nemhauser J.L., Zambryski P.C. TOU-SLED participates in apical tissue formation during gynoecium development in Arabidopsis [J]. Plant Cell, 1997, 9: 335-353.

[51]

Siemering K.R., Golbik R., Sever R., Haseloff J. Mutations that suppress the thermosensitivity of green fluorescent protein [J]. Curr. Biol., 1996, 6: 1653-1663.

[52]

Skarnes W.C., Auerbach B.A., Joyner A.L. A gene trap approach in mouse embryonic stem cells: ThelacZ reporter is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice [J]. Genes Dev., 1992, 6: 903-918.

[53]

Smith D.L., Fedoroff N.V. LRP1, a gene expressed in lateral and adventitious root primordia of Arabidopsis [J]. Plant Cell, 1995, 7: 735-745.

[54]

Springer P. S. Gene Traps: Tools for Plant Development and Genomics [J]. Plant Cell, 2000, 12: 1007-1020.

[55]

Springer P.S., McCombie W.R., Sundaresan V., Martienssen R.A. Gene trap tagging ofPROLIFERA, an essentialMCM2-3-5-like gene inArabidopsis [J]. Science, 1995, 268: 877-880.

[56]

Sundaresan V., Springer P., Volpe T., Haward S., Jones J.D.G., Dean C., Ma H., Martienssen R. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements [J]. Genes Dev., 1995, 9: 1797-1810.

[57]

Teeri T.H., Herrera-Estrella L., Depicker A., Van Montagu M., Palva E. T. Identification of plant promotersin situ by T-DNA-mediated transcriptional fusions to thenpt-II gene [J]. EMBOJ., 1986, 5: 1755-1760.

[58]

Topping J.F., Lindsey K. Promoter trap markers differentiate structural and positional components of polar development in Arabidopsis [J]. Plant Cell, 1997, 9: 1713-1725.

[59]

Topping J.F., Wei W., Lindsey K. Functional tagging of regulatory elements in the plant genome [J]. Development, 1991, 112: 1009-1019.

[60]

Topping J.F., Agyeman F., Henricot B., Lindsey K. Identification of molecular markers of embryogenesis inArabidopsis thaliana by promoter trapping [J]. Plant J., 1994, 5: 895-903.

[61]

Tsugeki R., Fedoroff N.V. Genetic ablation of root cap cells inArabidopsis [J]. Proc. Natl. Acad. Sci. USA, 1999, 96: 12941-12946.

[62]

Tsugeki R., Kochieva E.Z., Fedoroff N.V. A transposon insertion in theArabidopsis SSR16 gene causes an embryo-defective lethal mutation [J]. Plant J., 1996, 10: 479-489.

[63]

Tsukaya H., Uchimiya H. Genetic analyses of the formation of the serrated margin of leaf blades inArabidopsis: Combination of a mutational analysis of leaf morphogenesis with the characterization of a specific marker gene expressed in hydathodes and stipules [J]. Mol. Gen. Genet., 1997, 256: 231-238.

[64]

Weigel D. et al. Activation tagging in Arabidopsis [J]. Plant Physiol., 2000, 122: 1003-1014.

[65]

Wessler S.R., Baran G., Varagona M. The maize transposable elementDs is spliced from RNA [J]. Science, 1987, 237: 916-918.

[66]

Wilhelmi L.K., Preuss D. Self-sterility in Arabidopsis due to defective pollen tube guidance [J]. Science, 1996, 274: 1535-1537.

[67]

Willemsen V., Wolkenfelt H., de Vrieze G., Weisbeek P., Scheres B. TheHOBBIT gene is required for formation of the root meristem in theArabidopsis embryc [J]. Development, 1998, 125: 521-531.

AI Summary AI Mindmap
PDF

192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/