Assembling a physical map of the genome by marker sequences

Zhang Pei-yu , Zhang Hong-hai , Hua Yu-ping , Xu Lai-xiang

Journal of Forestry Research ›› 2000, Vol. 11 ›› Issue (2) : 127 -131.

PDF
Journal of Forestry Research ›› 2000, Vol. 11 ›› Issue (2) : 127 -131. DOI: 10.1007/BF02856690
Article

Assembling a physical map of the genome by marker sequences

Author information +
History +
PDF

Abstract

Molecular genetic maps were commonly constructed by analyzing the segregation of restriction fragment length polymorphisms (RFLPs). Here we described methodology-marker sequences in a new mapping based on recent documents. With the methods they were unique sequences detected by the polymerase chain reaction (PCR). Each of the methods had its limitations and the current trend was to integrate the maps produced by the different methods. Market sequences contained mainly expressed sequence tags (ESTs), polymorphic sequence-tagged sites (STSs), randomly amplified polymorphic DNA (RAPDs), cleaved amplified polymorphic sequences (CAPS), amplified fragment length polymorphism (AFLPs), genome sequence sampling (GSS) and sequence-tagged connectors (STCs) in this paper.

Keywords

Marker sequences / Sequence-tagged sites / Expressed sequence tags / Randomly amplified polymorphic DNA / Cleaved amplified polymorphic sequences / Amplified fragment length polymorphism / Genome sequence sampling / Sequence-tagged connectors / Q75 / A

Cite this article

Download citation ▾
Zhang Pei-yu, Zhang Hong-hai, Hua Yu-ping, Xu Lai-xiang. Assembling a physical map of the genome by marker sequences. Journal of Forestry Research, 2000, 11(2): 127-131 DOI:10.1007/BF02856690

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams M.D., Dubnick M., Kerlavage A.R. et al. Complementary DNA sequencing: expressed sequence tags and human genome project [J]. Science, 1991, 252: 1651-1656.

[2]

Archibald A.L. Mapping of the pig genome [J]. Current opinion in Genetics and Development, 1994, 4: 359-400.

[3]

Archibald A.L. The PiGMaP consortium linkage map of the pig (sus scrofa) [J]. Mammalian Genome, 1995, 6: 157-175.

[4]

Barendse W. A genetic linkage map of the bovine genome [J]. Nature Genetics., 1994, 6: 227-235.

[5]

Bender W., Spierer P., Hogness D.S. Chromosome walking and jumping to isolate DNA from the Ace and rose loci and the bithorax complex in Drosophila melanogaster [J]. Journal of Molecular Biology, 1983, 168: 17-33.

[6]

Chumakov I. Continuum of overlapping clones spanning the entire human chromosome 21q [J]. Nature, 1992, 359: 380-387.

[7]

Chumakov I.M. A YAC contig of the human genome [J]. Nature, 1995, 377: S175-S298.

[8]

Dib C. A comprehensive genetic map of the human genome based on 5264 microsatellites [J]. Nature, 1996, 380: 152-154.

[9]

Dietrich W.F. A genetic map of the mouse with 4006 simple sequence length polymorphisms [J]. Nature Genetics, 1994, 7: 220-225.

[10]

Dietrich W.F. A comprehensive map of the mouse genome [J]. Nature, 1996, 380: 149-152.

[11]

Eggen A., Fries R. An integrated cytogenetic and meiotic map of the bovine genome Animal Genetics, 1995, 26: 215-236.

[12]

Foote S., Vollrath D., Hilton A. et al. The human Y chromosome: overlapping DNA clones spanning the euchromatic region [J]. Science, 1992, 258: 60-66.

[13]

Green E.C., Olson M.V. Chromosomal region of the cystic fibrosis gene in yeast artificial chromosomes: a model for human genome mapping [J]. Science, 1990, 250: 94-98.

[14]

Hudson T.J. The STS-based map of the human genome [J]. Science, 1995, 270: 1945-1954.

[15]

Jacob H.J. A genetic linkage map of the laboratory rat, Rattus norvegicus [J]. Nature Genetics, 1995, 9: 63-69.

[16]

Jordan E., Collins F.S. A march of genetic maps [J]. Nature, 1996, 380: 11-12.

[17]

Kurata N. A. 300 kilobase interval genetic map of rice including 883 expressed sequences [J]. Nature Genetics, 1994, 8: 365-372.

[18]

Little P. Genome analysis [J]. Nature, 1996, 382: 408-408.

[19]

Makalowski W., Zhang J., Boguski M. S. Comparative analysis of 1196 orthologous mouse and human full-length mRNA and protein sequences [J]. Genome Research, 1996, 6: 846-857.

[20]

Mazur B.J., Tingey S.V. Genetic mapping and introgression of genes of agronomic importance [J]. Current Opinion in Biotechnology, 1995, 6: 175-182.

[21]

Olson M.V., Dutchik J.E., Graham M.Y. et al. A random-clone strategy for restriction mapping in yeast [J]. Proceedings of the National Academy of Science, USA, 1989, 83: 7826-7830.

[22]

Postlethwait J.H. A genetic linkage map for the zebrafish Science, 1994, 264: 699-704.

[23]

Reiter R.S., Williams J.G.K., Feldmann K.A. et al. Global and local genome mapping in Arabidopsis thaliana by using recombinant inbread lines and random amplified polymorphic DNAs [J]. Proceedings of the National Academy of Sciences, USA, 1992, 89: 1477-1481.

[24]

Schuler G.D. A gene map of the human genome [J]. Science, 1996, 274: 640-646.

[25]

Serikawa T. Rat gene mapping using PCR-analyzed microsatellites [J]. Genetics, 1992, 131: 701-721.

[26]

Smith M.W., Holmsen A.L., Wei Y.H. et al. Genome sequence sampling: a strategy for high resolution sequence based physical mapping of complex genomes [J]. Nature Genetics, 1994, 7: 40-47.

[27]

Tingey S.V., Del. Tufo J.P. Genetic analysis with RAPD markers [J]. Plant Physiology, 1993, 101: 349-352.

[28]

Venter J.C., Smith H.O., Hood L. A new strategy for genome sequencing [J]. Nature, 1996, 381: 364-366.

[29]

Vos P. AFLP: a new technique for DNA fringerprinting [J]. Nueleic Acids Research, 1995, 23: 4407-4414.

[30]

Weissenbach J., Gyapay G., Dib C. et al. A second generation linkage map of the human genome based on highly informative microsatellite loci [J]. Nature, 1992, 359: 794-802.

[31]

Williams J.G.K., Kubelik A.R., Livak K.J. et al. DNA polymorphisms amplified by arbitrary primers are usefule as genetic markers [J]. Nucleic Acids Research, 1990, 18: 6531-6535.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/