Ecophysiological responses and carbon distribution ofPinus koraiensis seedlings to elevated carbon dioxide

Han Shi-jie , Zhou Yu-mei , Wang Chen-rui , Zhang Jun-hui , Zou Chun-jing

Journal of Forestry Research ›› 2000, Vol. 11 ›› Issue (3) : 149 -155.

PDF
Journal of Forestry Research ›› 2000, Vol. 11 ›› Issue (3) : 149 -155. DOI: 10.1007/BF02855515
Article

Ecophysiological responses and carbon distribution ofPinus koraiensis seedlings to elevated carbon dioxide

Author information +
History +
PDF

Abstract

The net CO2 assimilation rate, stomatal conductance, RuBPcase (ribulose 1,5-biphosphate carboxylose) activity, dry weight of aboveground and belowgroud part, plant height, the length and diameter of taproot ofPinus koraiensis seedlings were measured and analyzed after six-week exposure to elevated CO2 in an open-top chamber in Changbai Mountain of China from May to Oct. 1999. Seedlings were planted in four different conditions: on an open site, control chamber, 500 μL·L−1 and 700 μL·L−1 CO2 chambers. The results showed that the total biomass of the seedlings increased whereas stomatal conductance decreased. The physiological responses and growth to 500 μL·L−1 and 700 μL·L−1 CO2 varied greatly. The acclimation of photosynthesis was downward to 700 μL·L−1 CO2 but upward to 500 μL·L−1 CO2. The RuBPcase activity, chlorophyll and soluble sugar contents of the seedlings grown at 500 μL·L−1 CO2 were higher than that at 700 μL·L−1 CO2. The concentration 500 μL·L−1 CO2 enhanced the growth of aboveground part whereas 700 μL·L−1 CO2 allocated more carbon to belowground part. Elevated CO2 changed the carbon distribution pattern. The ecophysiological responses were significantly different between plants grown under 500 μL·L−1 CO2 and 700 μL·L−1 CO2.

Keywords

Net CO2 assimilation / Stomatal conductance / RuBPcase / Pinus koraiensis / Biaomass / S791.247.02 / A / 1007-662X(2000)03-0149-07

Cite this article

Download citation ▾
Han Shi-jie, Zhou Yu-mei, Wang Chen-rui, Zhang Jun-hui, Zou Chun-jing. Ecophysiological responses and carbon distribution ofPinus koraiensis seedlings to elevated carbon dioxide. Journal of Forestry Research, 2000, 11(3): 149-155 DOI:10.1007/BF02855515

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bazzaz F.A. Response of natural ecosystems to the rising global CO2 levels [J]. Annu. Rev. Ecol. Syst., 1990, 21: 167-196.

[2]

Chomba B.M., Guy R.D., Weger H.G. Carbohydrate reserve accumulation and depletion in Engelmann spruce (Picea engelmannii Parry): effects of cold storage and pre-storage CO2 enrichment [J]. Tree Physiol., 1993, 13: 351-364.

[3]

Conroy J.P. Influence of elevated atmospheric CO2 concentration on plant nutrition [J]. Aust. J. Bot., 1992, 40: 445-456.

[4]

Dyson F. From Eros to Gaia [M], 1992 Harbin: Pantheon Books

[5]

Eamus D., Jarvis P.G. The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests [J]. Adv. Ecol. Res., 1989, 19: 1-55.

[6]

Eamus D., Berryman C.A., Duff G.A. Assimilation, stomatal conductance, specific leaf area and chlorophyll responses to elevated CO2 ofMaranthes corymbosa, a tropical monsoon rain forest species [J]. Aust. J. Plant Physiol., 1993, 20: 741-755.

[7]

Evan H. Delucia, Thomas W. Sasek, Boyd R. Strain Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide [J]. Photosynthesis Research, 1985, 7: 175-184.

[8]

Houghton J.T., Callender B.A., Varney S.K. Intergovernmental panel for climate change [R], 1992 U.K.: Cambridge University Press 1-200.

[9]

Hugo H. Rogers, Runion G. Brett, Sagar V. Krupa Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere [J]. Environmental Pollution, 1994, 83: 155-189.

[10]

Idso S.B., Kimball B.A., Mauney J.R. Effects of atmospheric CO2 enrichment on root:shoot ratios of carrot, radish, cotton and soybean [J]. Agric. Ecosyst. Environ., 1988, 21: 293-299.

[11]

Imai K., Coleman D.F., Yanagisawa T. Increase in atmospheric partial pressure of carbon dioxide and growth and yield of rice (Oryza sativa L.) [J]. Jap. J. Crop Sci., 1985, 54: 413-418.

[12]

Jarvis, P.G. 1993. Global change and plant water relations [C]. In: (eds Borghetti. M.J.Grace, & A. Raschi) Water transport in plant under climatic stress. pp. 1–13. Cambridge University Press.

[13]

Kimball B.A., Mauney J.R., Nakayama F.S., Idso S.B. Effects of increasing atmospheric CO2 on vegetation [J]. Vegetation, 1993, 104/105: 65-75.

[14]

Lemon E.R. CO2 and Plants, 1983 Boulder, CO, USA: Westview Press

[15]

Mauney J.R., Guinn G., Fry K.E., Hesketh J.D. Correlation of photosynthetic carbon dioxide uptake and carbohydrate accumulation in cotton, soybean, sunflower and sorghum [J]. Photosynthetica, 1979, 13: 260-266.

[16]

Norby R.J., Gunderson C.A., Wullschleger S.D., O'neill E.G., Mccracken M.K. Productivity and compensatory responses of yellow-poplar trees in elevated CO2 Nature, 1992, 357: 322-334.

[17]

Park S. Nobel, Zhang Hehui, Sharifi Rasoul, Castaneda Miguel, Greenhouse Barry Leaf expansion, net CO2 uptake, Rubisco activity, and efficiency of long-term biomass gain for the common desert subshrub [J]. Encelia farinosa., 1998, 56: 67-73.

[18]

Norby Richard J. Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide [J]. Plant and Soil, 1994, 165: 9-20.

[19]

Rogers H.H., Bingham G.E., Cure J.D., Smith J.M., Surano K.A. Responses of selected plant species to elevated carbon dioxide in the field [J]. J. Environ. Qua., 1983, 12: 569-574.

[20]

Sage R.F. Acclimation of photosynthesis to increasing CO2: the gas exchange perspective [J]. Photosynth. Res., 1994, 39: 351-368.

[21]

Sage R.F., Sharkey T.D., Seeman J.R. Acclimation of photosynthesis to elevated CO2 in five C3 species [J]. Plant Physiol., 1989, 89: 590-596.

[22]

Shanghai Institute of Plant Physiology 1985. Experimental handbook on plant physiology [M]. Shanghai Science and Technology Press, pp340.

[23]

Stitt M. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells [J]. Plant Cell Environ., 1991, 14: 741-762.

[24]

Tnsa P.P., Ting I.Y., Takahashi T. Observational constraints on the global atmospheric CO2 budget.[J] Science, 1990, 247: 1431-1438.

[25]

Wittwer, S.H. 1978. Carbon dioxide fertilization of crop plants [C]. In: Problems in Crop Physiology, (ed. U.S. Gupta. Haryana Agric. Univ.), Hissar, India, pp. 310–333.

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/