[1] | R.J. Koester. Lost Person Behavior: A Search and Rescue. DBS Productions LLC, Charlottesville, USA (2008). |
[2] | M.B. Bejiga, A. Zeggada, F. Melgani.Convolutional neural networks for near real-time object detection from UAV imagery in avalanche search and rescue operations. Proc. of IEEE Intl. Geoscience and Remote Sensing Symposium, Beijing(2016), pp. 693-696. |
[3] | I. Martinez-Alpiste, G. Golcarenarenji, Q. Wang, J.M. Alcaraz-Calero. Search and rescue operation using UAVs: A case study. Expert Syst. Appl., 178 (Sept.2021). 114937:1-9. |
[4] | M. Kampouraki, G.A. Wood, T.R. Brewer. Opportunities and limitations of object based image analysis for detecting urban impervious and vegetated surfaces using true-colour aerial photography. T. Blaschke, S. Lang, G.J. Hay (Eds.), Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications, Springer, Berlin (2008), pp. 555-569. |
[5] | C.A.B.Baker, S. Ramchurn, W.T. Luke Teacy, N.R. Jennings. Planning search and rescue missions for UAV teams. Proc. of the Twenty-Second European Conf. on Artificial Intelligence, Hague(2016), pp. 1777-1778. |
[6] | K. Yun, L. Nguyen, T. Nguyen, et al. Small target detection for search and rescue operations using distributed deep learning and synthetic data generation. Proc. of SPIE 10995, Baltimore (2019). 1099507:1-6. |
[7] | S.O. Murphy, C. Sreenan, K.N. Brown. Autonomous unmanned aerial vehicle for search and rescue using software defined radio. Proc. Of the IEEE 89th Vehicular Technology Conf., Kuala Lumpur (2019), pp. 1-6. |
[8] | E. Lygouras, N. Santavas, A. Taitzoglou, K. Tarchanidis, A. Mitropoulos, A. Gasteratos. Unsupervised human detection with an embedded vision system on a fully autonomous UAV for search and rescue operations. Sensors, 19 (16) (Aug.2019). 3542:1-20. |
[9] | L.-C. Jiao, F. Zhang, F. Liu, et al. A survey of deep learning-based object detection. IEEE Access, 7 (Sept.2019), pp. 128837-128868. |
[10] | S.-Q. Ren, K.-M. He, R. Girshick, J. Sun. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE T. Pattern Anal., 39 (6) (Jun.2017), pp. 1137-1149. |
[11] | T.-Y. Lin, P. Goyal, R. Girshick, K.-M. He, P. Dollár. Focal loss for dense object detection. Proc. of IEEE Intl. Conf. on Computer Vision, Venice(2017), pp. 2999-3007. |
[12] | Z.-W. Cai, N. Vasconcelos. Cascade R-CNN: delving into high quality object detection. Proc. of IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Salt Lake City (2018), pp. 6154-6162. |
[13] | J. Redmon, S. Divvala, R. Girshick, A. Farhadi. You only look once: unified, real-time object detection. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas (2016), pp. 779-788. |
[14] | W. Liu, D. Anguelov, D. Erhan, et al. SSD: single shot MultiBox detector. Proc. Of the 14th European Conf. on Computer Vision, Amsterdam (2016), pp. 21-37. |
[15] | Z. Ali, Q. Memon. Time delay tracking for multiuser synchronization in CDMA networks. J. Network., 8 (9) (Oct.2013), pp. 1929-1935. |
[16] | M. Tan, R. Pang, Q.V. Le. EfficientDet: Scalable and Efficient Object Detection. Proc. of IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Seattle (2020), pp. 10778-10787. |
[17] | M. Tan, Q.V. Le. EfficientNet: rethinking model scaling for convolutional neural networks. Proc. of 36th Intl. Conf. on Machine Learning, Long Beach, California (2019). |
[18] | J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei. ImageNet: a large-scale hierarchical image database. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, Miami(2009), pp. 248-255. |
[19] | T.-Y. Lin, M. Maire, S. Belongie, et al. Microsoft COCO: common objects in context. Proc. of the 13th European Conf. on Computer Vision, Zurich (2014), pp. 740-755. |
[20] | M. Rostami, S. Kolouri, E. Eaton, K. Kim. Deep transfer learning for few-shot SAR image classification. Rem. Sens., 11 (11) (Jun.2019). 1374:1-19. |
[21] | X.-D. Zhang, K. Zhu, G.-Z. Chen, et al. Geospatial object detection on high resolution remote sensing imagery based on double multi-scale feature pyramid network. Rem. Sens., 11 (7) (Mar.2019). 755:1-27. |
[22] | S. Sambolek, M. Ivasic-Kos. Automatic person detection in search and rescue operations using deep CNN detectors. IEEE Access, 9 (2021), pp. 37905-37922. |
[23] | M.K. Vasi?, V. Papi?. Improving the model for person detection in aerial image sequences using the displacement vector: A search and rescue scenario. Drones, 6 (1) (Jan.2022), pp. 1-19. |
[24] | M.G. Dorrer, A.E. Tolmacheva. Comparison of the YOLOv3 and Mask R-CNN architectures’ efficiency in the smart refrigerator’s computer vision. J. Phys. Conf., 1679 (4)(Nov. 2020). 042022:1-12. |
[25] | J.A. Kim, J.Y. Sung, S.H. Park.Comparison of Faster-RCNN, YOLO, and SSD for real-time vehicle type recognition. Proc.of IEEE Intl. Conf. on Consumer Electronics-Asia, Seoul(2020), pp. 1-4. |
[26] | Y.-T. Mao. A pedestrian detection algorithm for low light and dense crowd Based on improved YOLO algorithm. Proc. of MATEC Web of Conf 355 (Jan.2022). 03020:1-16. |
[27] | C. Wang, W. He, Y. Nie, J. Guo, C. Liu, K. Han, Y. Wang. Gold-YOLO: Efficient Object Detector via Gather-And-Distribute Mechanism. Proc. of Thirty-seventh Conf. on Neural Information Processing Systems, New Orleans (2023). |
[28] | Learn OpenCV. YOLOv5: Expert guide to custom object detection training. (2022). |
| [Online]. Available:. https://learnopencv.com/custom-object-detection-training-using-yolov5/. May 29, 2023. |
[29] | Paperspace by DigitalOcean. How to train YOLO v5 on a custom dataset. (2021). |
| [Online]. Available:. https://blog.paperspace.com/train-yolov5-custom-data/. May 29, 2023. |
[30] | F. Bashir, F. Porikli. Performance evaluation of object detection and tracking systems. Proc. of the 9th IEEE Intl. Workshop On PETS, New York (2006), pp. 7-14. |
[31] | N. Bachir, Q. Memon. Investigating YOLOv5 for search and rescue operations involving UAVs: investigating YOLO5. Proc. of the 5th Intl. Conf. on Control and Computer Vision, Xiamen (2022), pp. 200-204. |
[32] | S. Caputo, G. Castellano, F. Greco, C. Mencar, N. Petti, G. Vessio. Human detection in drone images using YOLO for search-and-rescue operations. Proc. of the 20th Intl. Conf. of AIxIA2021 - Advances in Artificial Intelligence, Milan (2022), pp. 326-337. |
[33] | M. Aljabri, M. AlAmir, M. AlGhamdi, M. Abdel-Mottaleb, F. Collado-Mesa. Towards a better understanding of annotation tools for medical imaging: a survey. Multimed. Tool. Appl., 81 (18) (Jul.2022), pp. 25877-25911. |