[1] | A.R.C. Claridades, J. Lee. Developing a data model of indoor points of interest to support location-based services. J. Sensor (2020). (Aug. 2020) 8885384:1-16. |
[2] | Y.-L. Zhao, J.-Q. Liang, Y.-F. Cui, X.-P. Sha, W.-J. Li. Adaptive 3D position estimation of pedestrians by wearing one ankle sensor. IEEE Sensor. J., 20 (19) (Oct.2020), pp. 11642-11651. |
[3] | M. Yang, B. Ai, R.-S. He, et al. V2V channel characterization and modeling for underground parking garages. China Commun., 16 (9) (Sept.2019), pp. 93-105. |
[4] | A. Ghose, B.-B. Li, S.-Y. Liu. Mobile targeting using customer trajectory patterns. Manage. Sci., 65 (11) (Mar.2019), pp. 5027-5049. |
[5] | A. Bastida-Castillo, C.D. Gómez-Carmona, E. De la Cruz-Sánchez, X. Reche-Royo, S.J. Ibá?ez, J.P. Ortega. Accuracy and inter-unit reliability of ultra-wide-band tracking system in indoor exercise. Appl. Sci., 9 (5) (Mar.2019), pp. 939:1-11. |
[6] | L. Ruan, L. Zhang, T. Zhou, Y. Long. An improved Bluetooth indoor positioning method using dynamic fingerprint window. Sensors, 20 (24) (Dec.2020), pp. 7269:1-19. |
[7] | V. Bianchi, P. Ciampolini, I. De Munari. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes. IEEE T. Instrum. Meas., 68 (2) (Feb.2019), pp. 566-575. |
[8] | S.M. Asaad, M.Y. Potrus, K.Z. Ghafoor, H.S. Maghdid, A. Mulahuwaish. Improving positioning accuracy using optimization approaches: a survey, research challenges and future perspectives. Wireless Pers. Commun., 122 (4) (Sept.2022), pp. 3393-3409. |
[9] | Z. Wei,J.-L. Chen, H. Tang, H. Zhang. RSSI-based location fingerprint method for RFID indoor positioning: A review. Nondestr. Test. Eval.(Sept. 2023), 10.1080/10589759.2023.2253493. |
[10] | W. Liu, Y.-G. Zhang, Z.-L. Deng, H.-Y. Zhou. Low-cost indoor wireless fingerprint location database construction methods: A review. IEEE Access, 11(Apr. 2023), pp. 37535-37545. |
[11] | S.J. Hayward, K. van Lopik, C. Hinde, A.A. West. A survey of indoor location technologies, techniques and applications in industry, Internet Things-Neth. 20 (Nov.2022), pp. 100608:1-19. |
[12] | M. Jia, S.B.A. Khattak, Q. Guo, X.-M. Gu, Y. Lin. Access point optimization for reliable indoor localization systems. IEEE T. Reliab., 69 (4) (Dec.2020), pp. 1424-1436. |
[13] | X.-N. Li, Z.-C. Dai, L.-M. He. A k-nearest neighbor indoor fingerprint location method based on coarse positioning circular domain and the highest similarity threshold. Meas. Sci. Technol., 34 (1) (Oct.2023), pp. 015108:1-10. |
[14] | X.-Y. Tong, Y. Wan, Q.-R. Li, X.-H. Tian, X.-B. Wang. CSI fingerprinting localization with low human efforts. IEEE/ACM T. Network., 29 (1) (Feb.2021), pp. 372-385. |
[15] | Y. Yang, A.-F. Zhou, H.-D. Ma. FineAP: fine-grained access point deployment strategy for 60 GHz millimeter-wave wireless networks. IEEE Commun. Lett., 27 (1) (Jan.2023), pp. 381-385. |
[16] | Y.-Z. Wu, J. Kokkoniemi, C. Han, M. Juntti. Interference and coverage analysis for terahertz networks with indoor blockage effects and line-of-sight access point association. IEEE T. Wirel. Commun., 20 (3) (Mar.2021), pp. 1472-1486. |
[17] | J.-H. Hu, A.-G. Zhang, Z. Chen, X.-P. Jin. Wi-Fi indoor localization based on long short-term memory neural network model of genetic algorithm. Proc. of 11th Intl. Conf. on Agro-Geoinformatics, Wuhan, China(2023), pp. 1-4. |
[18] | Y.-Z. Yuan, X. Yang, Q.-X. Lu, Y. Guo, Z.-X. Liu, X.-Y. Luo. An indoor location method based on features optimization for different regions with improved curve smoothness index. IEEE Sens. J., 23 (7) (Apr.2023), pp. 7362-7370. |
[19] | B. Gao, F. Yang, N. Cui, K. Xiong, Y. Lu, Y.-W. Wang. A federated learning framework for fingerprinting-based indoor localization in multibuilding and multifloor environments. IEEE Internet Things, 10 (3) (Feb.2023), pp. 2615-2629. |
[20] | D. Csik, á. Odry, P. Sarcevic. Fingerprinting-based indoor positioning using data fusion of different radiocommunication-based technologies. Machines, 11 (2) (Feb.2023), pp. 302:1-24. |
[21] | J.-J. Wang, J. Park. An enhanced indoor positioning algorithm based on fingerprint using fine-grained CSI and RSSI measurements of IEEE 802.11n WLAN. Sensors, 21 (8) (Apr.2021), pp. 2769:1-25. |
[22] | B. Jia, B.-Q. Huang, H.-P. Gao, W. Li, L.-F. Hao. Selecting critical WiFi APs for indoor localization based on a theoretical error analysis. IEEE Access, 7 (Mar.2019), pp. 36312-36321. |
[23] | W.-X. Xue, K.-G. Yu, Q.-Q. Li, et al. Eight-diagram based access point selection algorithm for indoor localization. IEEE T. Veh. Technol., 69 (11) (Nov.2020), pp. 13196-13205. |
[24] | H.A. Pham, Q.T.T. Nguyen, T.V. Le. An improved weighted k-nearest neighbors algorithm for high accuracy in indoor localization. Proc. of 25th Asia-Pacific Conf. on Communications, Ho Chi Minh City, Vietnam (2019), pp. 24-27. |
[25] | B.-Y. Wang, X.-L. Gan, X.-L. Liu, et al. A novel weighted KNN algorithm based on RSS similarity and position distance for Wi-Fi fingerprint positioning. IEEE Access, 8 (Feb.2020), pp. 30591-30602. |
[26] | Y. Tao, L. Zhao. Fingerprint localization with adaptive area search. IEEE Commun. Lett., 24 (7) (Jun.2020), pp. 1446-1450. |
[27] | M. Zhou, Y.-H. Li, M.J. Tahir, X.-L. Geng, Y. Wang, W. He. Integrated statistical test of signal distributions and access point contributions for Wi-Fi indoor localization. IEEE T. Veh. Technol., 70 (5) (May2021), pp. 5057-5070. |
[28] | A. Poulose, D.S. Han. Performance analysis of fingerprint matching algorithms for indoor localization. Proc. of Intl. Conf. on Artificial Intelligence in Information and Communication, Fukuoka, Japan (2020), pp. 661-665. |
[29] | Y. Zheng, J.-Y. Liu, M. Sheng, S. Han, Y. Shi, S. Valaee. Toward practical access point deployment for angle-of-arrival based localization. IEEE T. Commun., 69 (3) (Mar.2021), pp. 2002-2014. |
[30] | Y. Zheng, J.-Y. Liu, M. Sheng, S. Valaee, Y. Shi. Obstacle-aware access points deployment for angle-of-arrival based indoor localization. Proc. of IEEE Intl. Conf. on Communications, Dublin, Ireland(2020), pp. 1-6. |
[31] | S.-Y. Liu, R. De Lacerda, J. Fiorina. WKNN indoor Wi-Fi localization method using k-means clustering based radio mapping. Proc. of IEEE 93rd Vehicular Technology Conf., Helsinki, Finland(2021), pp. 1-5. |
[32] | X.-Y. Wang. The improvement and comparison study of distance metrics for machine learning algorithms for indoor Wi-Fi localization. IEEE Access, 11 (Aug.2023), pp. 85513-85524. |
[33] | F. Xu, X.-K. Hu, S.-W. Luo, J.-G. Shang. An efficient indoor Wi-Fi positioning method using virtual location of AP. ISPRS Int. J. Geo-Inf., 9 (4) (Apr.2020), pp. 261:1-16. |
[34] | H.C. Yen, L.Y.O. Yang, Z.M. Tsai. 3-D indoor localization and identification through RSSI-based angle of arrival estimation with real Wi-Fi signals. IEEE T. Microw. Theory, 70 (10) (Oct.2022), pp. 4511-4527. |
[35] | X.-L. Yang, Q.-C. Li, M. Zhou, J.-C. Wang. Phase-calibration-based 3-D beamspace matrix pencil algorithm for indoor passive positioning and tracking. IEEE Sens. J., 23 (17) (Sept.2023), pp. 19670-19683. |
[36] | J. Jun, L. He, Y. Gu, et al. Low-overhead WiFi fingerprinting. IEEE T. Mobile Comput., 17 (3) (Mar.2018), pp. 590-603. |
[37] | R.-R. Wang, Z.-H. Li, H.-Y. Luo, F. Zhao, W.-H. Shao, Q. Wang. A robust Wi-Fi fingerprint positioning algorithm using stacked denoising autoencoder and multi-layer perceptron. Remote Sens.-Basel, 11 (11) (May2019), pp. 1293:1-27. |