[1] | J.F. Keane, S.S. Carr. A brief history of early unmanned aircraft. J. Hopkins APL Tech. D., 32 (3) (2013), pp. 558-571. |
[2] | R. Yanushevsky.Guidance of Unmanned Aerial Vehicles. CRC Press, Boca Raton (2011). |
[3] | M.S. Grewal, A.P. Andrews, C.G. Bartone. Global Navigation Satellite Systems, Inertial Navigation,Integration. (fourth ed.), Wiley, Hoboken (2020). |
[4] | M. Jun, S.I. Roumeliotis, G.S. Sukhatme. State estimation of an autonomous helicopter using Kalman filtering. Proc. of IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Kyongju, South Korea, 1999), pp. 1346-1353. |
[5] | Y. Oshman, I. Shaviv.Optimal tuning of a Kalman filter using genetic algorithms. Proc. of AIAA Guidance, Navigation, and Control Conf. and Exhibit, Dever, USA(2000), pp. 1-11. |
[6] | J. Sasiadek, Q. Wang, R. Johnson, L. Sun, J. Zalewski.UAV navigation based on parallel extended Kalman filter. Proc. of AIAA Guidance, Navigation, and Control Conf. and Exhibit, Dever, USA(2000), pp. 1-8. |
[7] | G. Conte, P. Doherty. Vision-based unmanned aerial vehicle navigation using geo-referenced information. EURASIP J. Adv. Sig. Pr., 2009 (1)(2009), pp. 387308:1-18. |
[8] | A. Mohammadi, F. Sheikholeslam, M. Emami. Metaheuristic algorithms for integrated navigation systems. M. Ouaissa, I.U. Khan, M. Ouaissa, Z. Boulouard, S.B.H. Shah (Eds.), Computational Intelligence for Unmanned Aerial Vehicles Communication Networks, Springer, Cham (2022), pp. 45-72. |
[9] | B. Zolesi, L.R. Cander. Ionospheric Prediction and Forecasting. Springer, Berlin (2014). |
[10] | R.A. Steenburgh, C.G. Smithtro, K.M. Groves. Ionospheric scintillation effects on single frequency GPS. Space Weather, 6 (4) (2008), pp. S04D02:1-12. |
[11] | R.W. Eastes, S.C. Solomon, R.E. Daniell, et al. Global-scale observations of the equatorial ionization anomaly. Geophys. Res. Lett., 46 (16) (2019), pp. 9318-9326. |
[12] | M.H. Mokhtar, N.A. Rahim, M.Y. Ismail, S.M. Buhari. Ionospheric perturbation: A review of equatorial plasma bubble in the ionosphere. Proc. of 6th Intl. Conf. on Space Science and Communication, Johor Bahru, Malaysia (2019), pp. 23-28. |
[13] | D. Silva, H. Takahashi, C. Wrasse, C. Figueireido.Characteristics of ionospheric bubbles observed by TEC maps in Brazilian sector. Proc. of 15th Intl. Congress of the Brazilian Geophysical Society, Rio de Janeiro, Brazil(2017), pp. 23-28. |
[14] | H. Takahashi, M.J. Taylor, J.H.A. Sobral, A.F. Medeiros, D. Gobbi, D.C. Santana. Fine structure of the ionospheric plasma bubbles observed by the OI6300 and 5577 airglow images. Adv. Space Res., 27 (6-7)(2001), pp. 1189-1194. View articleGoogle Scholar. |
[15] | F.D. Chu, J.Y. Liu, H. Takahashi, J.H.A. Sobral, M.J. Taylor, A.F. Medeiros. The climatology of ionospheric plasma bubbles and irregularities over Brazil. Ann. Geophys.-Germany, 23 (2) (2005), pp. 379-384. |
[16] | A. Couturier, M.A. Akhloufi. A review on absolute visual localization for UAV. Robot. Auton. Syst., 135 (2021), pp. 103666:1-17. |
[17] | A. Couturier, M.A. Akhloufi. Convolutional neural networks and particle filter for UAV localization. Proc. of SPIE 11758, Unmanned Systems Technology XXIII, Online (2021), pp. 117580D:1-13. |
[18] | V. Walter, M. Vrba, M. Saska. On training datasets for machine learning-based visual relative localization of micro-scale UAVs. Proc. of IEEE Intl. Conf. on Robotics and Automation, Paris, France (2020), pp. 10674-10680. |
[19] | V.A.M.F. Torres, B.R.A. Jaimes, E.S. Ribeiro, et al. Combined weightless neural network FPGA architecture for deforestation surveillance and visual navigation of UAVs. Eng. Appl. Artif. Intel., 87 (2020), pp. 103227:1-9. |
[20] | G. da Penha Neto, H.F. de Campos Velho, E.H. Shiguemori, J.R.G. Braga. Image processing for UAV autonomous navigation applying self-configuring neural network. C. Constanda, P. Harris (Eds.), Integral Methods in Science and Engineering, Springer, Cham (2019), pp. 321-332. |
[21] | J.R.G. Braga, H.F. de Campos Velho, E.H. Shiguemori, P. Doherty. Drone autonomous navigation by hardware image processing. Mecanica Computacional, XXXVII (2019), pp. 2033-2043. Santa Fe. |
[22] | C.A.O. Silva, G.A.M. Goltz, E.H. Shiguemori, et al. Image matching applied to autonomous navigation of unmanned aerial vehicles. Intl. Journal of High Performance Systems Architecture, 6 (4) (2017), pp. 205-212. |
[23] | A. Shetty, G.X. Gao. UAV pose estimation using cross-view geolocalization with satellite imagery. Proc. of Intl. Conf. on Robotics and Automation, Montreal, Canada (2019), pp. 1827-1833. |
[24] | T. Hinzmann, R. Siegwart, Deep UAV localization with reference view rendering [Online]. Available, https://arxiv.org/abs/2008.04619, August 2020. |
[25] | T.Y. Lin, S. Belongie, J. Hays. Cross-view image geolocalization. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, Portland, USA (2013), pp. 891-898. |
[26] | T.Y. Lin, Y. Cui, S. Belongie, J. Hays. Learning deep representations for ground-to-aerial geolocalization. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, Boston, USA (2015), pp. 5007-5015. |
[27] | J.R.G. Braga. Navega??o Aut?noma de VANT por Imagens LiDAR. Ph.D. dissertation, Instituto Nacional de Pesquisas Espaciais, S?o José dos Campos, Brazil (2018). |
[28] | W. da Silva, N.L. Vijaykumar, S.A. Sandri, et al. Image edge extraction by artificial intelligence schemes for UAV autonomous navigation. Proc. Series of the Brazilian Society of Computational and Applied Mathematics, 7 (1) (2020), pp. 1-7. |
[29] | A. Al-Amaren, M.O. Ahmad, M.N.S. Swamy. RHN: a residual holistic neural network for edge detection. IEEE Access, 9 (2021), pp. 74646-74658. |
[30] | D.-P. Yang, B. Peng, Z. Al-Huda, A. Malik, D.-H. Zhai. An overview of edge and object contour detection. Neurocomputing, 488 (2022), pp. 470-493. View articleGoogle Scholar. |
[31] | K. Li, Y.-J. Tian, B. Wang, Z.-Q. Qi, Q. Wang. Bi-directional pyramid network for edge detection. Electronics, 10 (3) (2021), pp. 329:1-15. |
[32] | J.-Y. Zhan, A.-T. Yu, W. Jiang, et al. FPGA-based acceleration for binary neural networks in edge computing. Journal of Electronic Science and Technology, 21 (2) (2023), pp. 100204:1-13. |
[33] | M.D. Ciletti.Advanced Digital Design with the Verilog HDL. (second ed.), Prentice Hall Press, Upper Saddle River (2010). |
[34] | G. Valente, T.D. Mascio, L. Pomante, G. D’Andrea. Dynamic partial reconfiguration profitability for real-time systems. IEEE Embed. Syst. Lett., 13 (3) (2021), pp. 102-105. |
[35] | X.-D. Sun, Z.-Q. Wang, W. Jing. Image filtering and edge detection system based on FPGA. Proc. of 10th Intl. Conf. on Communications, Signal Processing,Systems, Singapore (2022), pp. 148-156. |
[36] | Q. Qin, L.-Y. Sun, Y. Feng. Real-time image filtering and edge detection method based on FPGA. Proc. of IEEE 5th Intl. Conf. on Electronics Technology, Chengdu, China (2022), pp. 1168-1173. |
[37] | F. De Vivo, M. Battipede, E. Johnson. Infrared line camera data-driven edge detector in UAV forest fire monitoring. Aero. Sci. Technol., 111 (2021), pp. 106574:1-8. |
[38] | K. Kaur, N. Jindal, K. Singh. Fractional Fourier transform based Riesz fractional derivative approach for edge detection and its application in image enhancement. Signal Process., 180 (2021), pp. 107852:1-19. |
[39] | J.-M. Zhang, Z.-Y. Zi, T. Jiang, C. Zhang, Y.-H. Tai. Implementation and optimization of FPGA-based edge detection algorithm. Z.T. Yu, S. Patnaik, J. Wang, N. Dey (Eds.), Advancements in Mechatronics and Intelligent Robotics, Springer, Singapore(2021), pp. 611-617. |
[40] | D.-J. Liu, G.-L. Pu, X.-Y. Wu. Quaternion-based improved cuckoo algorithm for colour UAV image edge detection. IET Image Process., 16 (3) (2022), pp. 926-935. |
[41] | G. Conte, P. Doherty. An integrated UAV navigation system based on aerial image matching. Proc. of IEEE Aerospace Conf., Big Sky, USA (2008), pp. 1-10. |
[42] | J.R.G. Braga, H.F.C. Velho, G. Conte, P. Doherty, é.H. Shiguemori. An image matching system for autonomous UAV navigation based on neural network. Proc. of 14th Intl. Conf. on Control, Automation, Robotics and Vision, Phuket, Thailand (2016), pp. 1-6. |
[43] | E.F.P. da Luz, J.C. Becceneri, H.F. de Campos Velho. A new multi-particle collision algorithm for optimization in a high performance environment. Journal of Computational Interdisciplinary Sciences, 1 (1) (2008), pp. 3-10. |
[44] | H. Goforth, S. Lucey. GPS-denied UAV localization using pre-existing satellite imagery. Proc. of Intl. Conf. on Robotics and Automation, Montreal, Canada (2019), pp. 2974-2980. |
[45] | J.F. Hughes, A. van Dam, M. McGuire, et al. Computer Graphics: Principles and Practice. (third ed.), Addison-Wesley, Reading (2013). |
[46] | N. Otsu. A threshold selection method from gray-level histograms. IEEE T. Systems, Man,Cybernetics, 9 (1) (1979), pp. 62-66. |
[47] | C. Cortes, V. Vapnik. Support-vector networks. Mach. Learn., 20 (3) (1995), pp. 273-297. |
[48] | B. Sch?lkopf, P. Simard, A. Smola, V. Vapnik. Prior knowledge in support vector kernels. Proc. of 10th Intl. Conf. on Neural Information Processing Systems, Cambridge, UK(1997), pp. 640-646. |
[49] | V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York (1995). |
[50] | V.N. Vapnik, A.Y. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. V. Vovk, H. Papadopoulos, A. Gammerman (Eds.), Measures of Complexity, Springer, Cham (2015), pp. 11-30. |
[51] | H. Drucker, C.J.C.Burges, L. Kaufman, A. Smola, V. Vapnik. Support vector regression machines. Proc. of 9th Intl. Conf. on Neural Information Processing Systems, Denver, USA(1996), pp. 155-161. |
[52] | M. Awad, R. Khanna. Efficient Learning Machines: Theories, Concepts,Applications for Engineers and System Designers. Apress, Berkeley (2015). |
[53] | G.C. Batista, D.L. Oliveira, O. Saotome, W.L.S. Silva. A low-power asynchronous hardware implementation of a novel SVM classifier, with an application in a speech recognition system. Microelectron. J., 105 (2020), pp. 104907:1-17. |
[54] | L.-G. Guo, S.-T. Wu. FPGA implementation of a real-time edge detection system based on an improved Canny algorithm. Appl. Sci., 13 (2) (2023), pp. 870:1-17. |
[55] | V. Conti, C. Militello, L. Rundo, S. Vitabile. A novel bio-inspired approach for high-performance management in service-oriented networks. IEEE T. Emerg. Top. Com., 9 (4) (2021), pp. 1709-1722. |