Coupled Surface Process and Orographic Precipitation Model for the Landscape Evolution of the Himalayas

Yuqiang Li, Xiaoping Yuan

Journal of Earth Science ›› 2024, Vol. 35 ›› Issue (3) : 1063-1068.

Journal of Earth Science All Journals
Journal of Earth Science ›› 2024, Vol. 35 ›› Issue (3) : 1063-1068. DOI: 10.1007/s12583-024-2012-x
Editorials

Coupled Surface Process and Orographic Precipitation Model for the Landscape Evolution of the Himalayas

Author information +
History +

Cite this article

Download citation ▾
Yuqiang Li, Xiaoping Yuan. Coupled Surface Process and Orographic Precipitation Model for the Landscape Evolution of the Himalayas. Journal of Earth Science, 2024, 35(3): 1063‒1068 https://doi.org/10.1007/s12583-024-2012-x
This is a preview of subscription content, contact us for subscripton.

References

Adams B A, Whipple K X, Forte A M, . Climate Controls on Erosion in Tectonically Active Landscapes. Science Advances, 2020, 6 42 eaaz3166
CrossRef Google scholar
Beaumont C, Jamieson R A, Nguyen M H, . Himalayan Tectonics Explained by Extrusion of a Low-Viscosity Crustal Channel Coupled to Focused Surface Denudation. Nature, 2001, 414: 738-742.
CrossRef Google scholar
Bookhagen B, Burbank D W. Toward a Complete Himalayan Hydrological Budget: Spatiotemporal Distribution of Snowmelt and Rainfall and Their Impact on River Discharge. Journal of Geophysical Research (Earth Surface), 2010, 115 F3 F03019.
Braun J, Willett S D. A very Efficient O(n), Implicit and Parallel Method to Solve the Stream Power Equation Governing Fluvial Incision and Landscape Evolution. Geomorphology, 2013, 180/181: 170-179.
CrossRef Google scholar
Carrapa B, Robert X, DeCelles P G, . Asymmetric Exhumation of the Mount Everest Region: Implications for the Tectono-Topographic Evolution of the Himalaya. Geology, 2016, 44(8): 611-614.
CrossRef Google scholar
Clark M K, Royden L H. Topographic Ooze: Building the Eastern Margin of Tibet by Lower Crustal Flow. Geology, 2000, 28 8 703
CrossRef Google scholar
Clark, M. K., Royden, L. H., Whipple, K. X., et al., 2006. Use of a Regional, Relict Landscape to Measure Vertical Deformation of the Eastern Tibetan Plateau. Journal of Geophysical Research: Earth Surface, 111(F3). https://doi.org/10.1029/2005jf000294
Clift P D, Hodges K V, Heslop D, . Correlation of Himalayan Exhumation Rates and Asian Monsoon Intensity. Nature Geoscience, 2008, 1: 875-880.
CrossRef Google scholar
Culling W E H. Analytical Theory of Erosion. The Journal of Geology, 1960, 68(3): 336-344.
CrossRef Google scholar
Dai J G, Fox M, Han X, . Two Stages of Accelerated Exhumation in the Middle Reach of the Yarlung River, Southern Tibet since the Mid-Miocene. Tectonics, 2021, 40 6 e2020TC006618
CrossRef Google scholar
Davis D, Suppe J, Dahlen F A. Mechanics of Fold-and-Thrust Belts and Accretionary Wedges. Journal of Geophysical Research: Solid Earth, 1983, 88(B2): 1153-1172.
CrossRef Google scholar
Ding L, Kapp P, Cai F L, . Timing and Mechanisms of Tibetan Plateau Uplift. Nature Reviews Earth & Environment, 2022, 3(10): 652-667.
CrossRef Google scholar
Gao R, Lu Z W, Klemperer S L, . Crustal-Scale Duplexing beneath the Yarlung Zangbo Suture in the Western Himalaya. Nature Geoscience, 2016, 9: 555-560.
CrossRef Google scholar
Grandin R, Doin M P, Bollinger L, . Long-Term Growth of the Himalaya Inferred from Interseismic InSAR Measurement. Geology, 2012, 40(12): 1059-1062.
CrossRef Google scholar
Guerit L, Yuan X P, Carretier S, . Fluvial Landscape Evolution Controlled by the Sediment Deposition Coefficient: Estimation from Experimental and Natural Landscapes. Geology, 2019, 47(9): 853-856.
CrossRef Google scholar
Hergarten S, Robl J. The Linear Feedback Precipitation Model (LFPM 1.0)—A Simple and Efficient Model for Orographic Precipitation in the Context of Landform Evolution Modeling. Geoscientific Model Development, 2022, 15(5): 2063-2084.
CrossRef Google scholar
Hu Y Y, Li X, Boos W R, . Emergence of the Modern Global Monsoon from the Pangaea Megamonsoon Set by Palaeogeography. Nature Geoscience, 2023, 16: 1041-1046.
CrossRef Google scholar
Husson L, Bernet M, Guillot S, . Dynamic ups and downs of the Himalaya. Geology, 2014, 42(10): 839-842.
CrossRef Google scholar
Ibarra D E, Dai J G, Gao Y, . High-Elevation Tibetan Plateau before India-Eurasia Collision Recorded by Triple Oxygen Isotopes. Nature Geoscience, 2023, 16(9): 810-815.
CrossRef Google scholar
Lavé J, Avouac J P. Fluvial Incision and Tectonic Uplift across the Himalayas of Central Nepal. Journal of Geophysical Research: Solid Earth, 2001, 106(B11): 26561-26591.
CrossRef Google scholar
Li Y L, Wang C S, Dai J G, . Propagation of the Deformation and Growth of the Tibetan-Himalayan Orogen: A Review. Earth-Science Reviews, 2015, 143: 36-61.
CrossRef Google scholar
Liang S M, Gan W J, Shen C Z, . Three-Dimensional Velocity Field of Present-Day Crustal Motion of the Tibetan Plateau Derived from GPS Measurements. Journal of Geophysical Research: Solid Earth, 2013, 118(10): 5722-5732.
CrossRef Google scholar
Molnar, P., Stock, J. M., 2009. Slowing of India’s Convergence with Eurasia since 20 Ma and Its Implications for Tibetan Mantle Dynamics. Tectonics, 28(3). https://doi.org/10.1029/2008tc002271
Richardson P W, Perron J T, Schurr N D. Influences of Climate and Life on Hillslope Sediment Transport. Geology, 2019, 47(5): 423-426.
CrossRef Google scholar
Sarr A C, Donnadieu Y, Bolton C T, . Neogene South Asian Monsoon Rainfall and Wind Histories Diverged due to Topographic Effects. Nature Geoscience, 2022, 15: 314-319.
CrossRef Google scholar
Smith R B, Barstad I. A Linear Theory of Orographic Precipitation. Journal of the Atmospheric Sciences, 2004, 61(12): 1377-1391.
CrossRef Google scholar
van Hinsbergen D J J, Lippert P C, Dupont-Nivet G, . Greater India Basin Hypothesis and a Two-Stage Cenozoic Collision between India and Asia. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(20): 7659-7664.
CrossRef Google scholar
Whipple K X. The Influence of Climate on the Tectonic Evolution of Mountain Belts. Nature Geoscience, 2009, 2: 97-104.
CrossRef Google scholar
Whipple K X, Kirby E, Brocklehurst S H. Geomorphic Limits to Climate-Induced Increases in Topographic Relief. Nature, 1999, 401: 39-43.
CrossRef Google scholar
Whipple K X, Tucker G E. Dynamics of the Stream-Power River Incision Model: Implications for Height Limits of Mountain Ranges, Landscape Response Timescales, and Research Needs. Journal of Geophysical Research: Solid Earth, 1999, 104(B8): 17661-17674.
CrossRef Google scholar
Wu F L, Fang X M, Yang Y B, . Reorganization of Asian Climate in Relation to Tibetan Plateau Uplift. Nature Reviews Earth & Environment, 2022, 3(10): 684-700.
CrossRef Google scholar
Yuan X P, Braun J, Guerit L, . A New Efficient Method to Solve the Stream Power Law Model Taking into Account Sediment Deposition. Journal of Geophysical Research: Earth Surface, 2019, 124(6): 1346-1365.
CrossRef Google scholar
Yuan X P, Huppert K L, Braun J, . Propagating Uplift Controls on High-Elevation, Low-Relief Landscape Formation in the Southeast Tibetan Plateau. Geology, 2022, 50(1): 60-65.
CrossRef Google scholar

40

Accesses

1

Citations

Detail

Sections
Recommended

/