An Advanced Image Processing Technique for Backscatter-Electron Data by Scanning Electron Microscopy for Microscale Rock Exploration

Zhaoliang Hou, Kunfeng Qiu, Tong Zhou, Yiwei Cai

Journal of Earth Science ›› 2024, Vol. 35 ›› Issue (1) : 301-305.

Journal of Earth Science All Journals
Journal of Earth Science ›› 2024, Vol. 35 ›› Issue (1) : 301-305. DOI: 10.1007/s12583-024-1969-9
Editorials

An Advanced Image Processing Technique for Backscatter-Electron Data by Scanning Electron Microscopy for Microscale Rock Exploration

Author information +
History +

Abstract

Backscatter electron analysis from scanning electron microscopes (BSE-SEM) produces high-resolution image data of both rock samples and thin-sections, showing detailed structural and geochemical (mineralogical) information. This allows an in-depth exploration of the rock microstructures and the coupled chemical characteristics in the BSE-SEM image to be made using image processing techniques. Although image processing is a powerful tool for revealing the more subtle data “hidden” in a picture, it is not a commonly employed method in geoscientific microstructural analysis. Here, we briefly introduce the general principles of image processing, and further discuss its application in studying rock microstructures using BSE-SEM image data.

Keywords

Image processing / rock microstructures / electron-based imaging / data mining

Cite this article

Download citation ▾
Zhaoliang Hou, Kunfeng Qiu, Tong Zhou, Yiwei Cai. An Advanced Image Processing Technique for Backscatter-Electron Data by Scanning Electron Microscopy for Microscale Rock Exploration. Journal of Earth Science, 2024, 35(1): 301‒305 https://doi.org/10.1007/s12583-024-1969-9
This is a preview of subscription content, contact us for subscripton.

References

Arganda-Carreras I, Kaynig V, Rueden C, . Trainable Weka Segmentation: A Machine Learning Tool for Microscopy Pixel Classification. Bioinformatics, 2017, 33(15): 2424-2426.
CrossRef Google scholar
Boyat, A. K., Joshi, B. K., 2015. A Review Paper: Noise Models in Digital Image Processing. arXiv: 1505.03489. http://arxiv.org/abs/1505.03489
Cheng Q M. IUGS’ Initiative on Data-Driven Geoscience Discovery. Journal of Earth Science, 2021, 32(2): 468-470.
CrossRef Google scholar
Cnudde V, Boone M N. High-Resolution X-Ray Computed Tomography in Geosciences: A Review of the Current Technology and Applications. Earth-Science Reviews, 2013, 123: 1-17.
CrossRef Google scholar
De Boever W, Derluyn H, Van Loo D, . Data-Fusion of High Resolution X-Ray CT, SEM and EDS for 3D and Pseudo-3D Chemical and Structural Characterization of Sandstone. Micron, 2015, 74: 15-21.
CrossRef Google scholar
El-Gabry E A, Parwani A V, Pantanowitz L. Whole-Slide Imaging: Widening the Scope of Cytopathology. Diagnostic Histopathology, 2014, 20(12): 456-461.
CrossRef Google scholar
Goldstein J I, Newbury D E, Michael J R, . ImageJ and Fiji. Scanning Electron Microscopy and X-Ray Microanalysis, 2018, New York: Springer, 187-193.
Gonzalez R C, Woods R E. Digital Image Processing, 2018, 4th Ed, New York: Pearson Education Limited, 1009.
Hong L, Wan Y F, Jain A. Fingerprint Image Enhancement: Algorithm and Performance Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8): 777-789.
CrossRef Google scholar
Hou Z L, Fusseis F, Schöpfer M, . Synkinematic Evolution of Stylolite Porosity. Journal of Structural Geology, 2023, 173 104916
CrossRef Google scholar
Hou Z L, Woś D, Tschegg C, . Three-Dimensional Mineral Dendrites Reveal a Nonclassical Crystallization Pathway. Geology, 2023, 51(7): 626-630.
CrossRef Google scholar
Jain, V., Seung, H. S., 2008. Natural Image Denoising with Convolutional Networks. Proceedings of the 21st International Conference on Neural Information Processing Systems, December 8–10, 2008, Vancouver, British Columbia, Canada. 769–776. https://doi.org/10.5555/2981780.2981876
Karras, T., Laine, S., Aittala, M., et al., 2020. Analyzing and Improving the Image Quality of StyleGAN. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle. IEEE. 8107–8116. https://doi.org/10.1109/CVPR42600.2020.00813
Minaee S, Boykov Y, Porikli F, . Image Segmentation Using Deep Learning: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3523-3542.
Prêt D, Sammartino S, Beaufort D, . A New Method for Quantitative Petrography Based on Image Processing of Chemical Element Maps: Part I. Mineral Mapping Applied to Compacted Bentonites. American Mineralogist, 2010, 95(10): 1379-1388.
CrossRef Google scholar
Reed S J B. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology, 2005, Cambridge: Cambridge University Press, 215
CrossRef Google scholar
Schindelin J, Arganda-Carreras I, Frise E, . Fiji: An Open-Source Platform for Biological-Image Analysis. Nature Methods, 2012, 9(7): 676-682.
CrossRef Google scholar
Sonka M, Hlaváč V, Boyle R. Image Processing Analysis and Machine Vision, 2013, New York: Springer, 554.
Swamy S, Kulkarni P K. A Basic Overview on Image Denoising Techniques. Int. Res. J. Eng. Technol., 2020, 7(5): 850-857.
Tschegg C, Hou Z L, Rice A H N, . Fault Zone Structures and Strain Localization in Clinoptilolite-Tuff (Nižný Hrabovec, Slovak Republic). Journal of Structural Geology, 2020, 138 104090
CrossRef Google scholar
Wang Z, Bovik A C. Modern Image Quality Assessment, 2006, California: Morgan & Claypool Publishers, 146
CrossRef Google scholar
Xu J, Yang L, Wu D P. Ripplet: A New Transform for Image Processing. Journal of Visual Communication and Image Representation, 2010, 21(7): 627-639.
CrossRef Google scholar
Zehner B, Börner J H, Görz I, . Workflows for Generating Tetrahedral Meshes for Finite Element Simulations on Complex Geological Structures. Computers & Geosciences, 2015, 79: 105-117.
CrossRef Google scholar
Zhang L, Qiu K F, Hou Z L, . Fluid-Rock Reactions of the Triassic Taiyangshan Porphyry Cu-Mo Deposit (West Qinling, China) Constrained by QEMSCAN and Iron Isotope. Ore Geology Reviews, 2021, 132 104068
CrossRef Google scholar

48

Accesses

0

Citations

Detail

Sections
Recommended

/