Coexisting Carbonatite and Silicate Melt Inclusions in the Cretaceous Volcanic Rock from the Central Great Xing’an Range, Northeast China: Evidence for Recycled Carbonate from Subducted Paleo-Pacific Plate

Chao Zhang , Hongxu Pu , Jianqiang Liu , Xiaojun Wang , Wenqiang Yang , Zhenbing She , Shitou Wu , Gang Zeng , Lihui Chen , Francois Holtz

Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (1) : 364 -372.

PDF
Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (1) : 364 -372. DOI: 10.1007/s12583-024-0135-8
Editorial

Coexisting Carbonatite and Silicate Melt Inclusions in the Cretaceous Volcanic Rock from the Central Great Xing’an Range, Northeast China: Evidence for Recycled Carbonate from Subducted Paleo-Pacific Plate

Author information +
History +
PDF

Cite this article

Download citation ▾
Chao Zhang, Hongxu Pu, Jianqiang Liu, Xiaojun Wang, Wenqiang Yang, Zhenbing She, Shitou Wu, Gang Zeng, Lihui Chen, Francois Holtz. Coexisting Carbonatite and Silicate Melt Inclusions in the Cretaceous Volcanic Rock from the Central Great Xing’an Range, Northeast China: Evidence for Recycled Carbonate from Subducted Paleo-Pacific Plate. Journal of Earth Science, 2025, 36(1): 364-372 DOI:10.1007/s12583-024-0135-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berkesi M, Bali E, Bodnar R J . Carbonatite and Highly Peralkaline Nephelinite Melts from Oldoinyo Lengai Volcano, Tanzania: The Role of Natrite-Normative Fluid Degassing. Gondwana Research, 2020, 85 76-83.

[2]

Berndt J, Klemme S. Origin of Carbonatites-Liquid Immiscibility Caught in the Act. Nature Communications, 2022, 13(1): 2892.

[3]

Carter L B, Dasgupta R. Hydrous Basalt-Limestone Interaction at Crustal Conditions: Implications for Generation of Ultracalcic Melts and Outflux of CO2 at Volcanic Arcs. Earth and Planetary Science Letters, 2015, 427 202-214.

[4]

Charlier B, Grove T L. Experiments on Liquid Immiscibility along Tholeiitic Liquid Lines of Descent. Contributions to Mineralogy and Petrology, 2012, 164(1): 27-44.

[5]

Chen C F, Förster M W, Foley S F . Carbonate-Rich Crust Subduction Drives the Deep Carbon and Chlorine Cycles. Nature, 2023, 620(7974): 576-581.

[6]

Chen W, Kamenetsky V S, Simonetti A. Evidence for the Alkaline Nature of Parental Carbonatite Melts at Oka Complex in Canada. Nature Communications, 2013, 4(1): 2687.

[7]

Dasgupta R, Hirschmann M M. The Deep Carbon Cycle and Melting in Earth’s Interior. Earth and Planetary Science Letters, 2010, 298(1/2): 1-13.

[8]

Dasgupta R, Hirschmann M M, Smith N D. Partial Melting Experiments of Peridotite + CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts. Journal of Petrology, 2007, 48(11): 2093-2124.

[9]

Dasgupta R, Hirschmann M M, Stalker K. Immiscible Transition from Carbonate-Rich to Silicate-Rich Melts in the 3 GPa Melting Interval of Eclogite + CO2 and Genesis of Silica Undersaturated Ocean Island Lavas. Journal of Petrology, 2006, 47(4): 647-671.

[10]

Dasgupta R, Mallik A, Tsuno K . Carbon-Dioxide-Rich Silicate Melt in the Earth’ s Upper Mantle. Nature, 2013, 493(7431): 211-215.

[11]

Dong Y, Ge W C, Yang H . Geochronology and Geochemistry of Early Cretaceous Volcanic Rocks from the Baiyingaolao Formation in the Central Great Xing’ an Range, NE China, and Its Tectonic Implications. Lithos, 2014, 205 168-184.

[12]

Eguchi J, Dasgupta R. A CO2 Solubility Model for Silicate Melts from Fluid Saturation to Graphite or Diamond Saturation. Chemical Geology, 2018, 487 23-38.

[13]

Erdmann S, Chen L H, Liu J Q . Hot, Volatile-Poor, and Oxidized Magmatism above the Stagnant Pacific Plate in Eastern China in the Cenozoic. Geochemistry, Geophysics, Geosystems, 2019, 20(11): 4849-4868.

[14]

Fischer L A, Wang M, Charlier B . Immiscible Iron- and Silica-Rich Liquids in the Upper Zone of the Bushveld Complex. Earth and Planetary Science Letters, 2016, 443 108-117.

[15]

Gao S, Rudnick R L, Yuan H L . Recycling Lower Continental Crust in the North China Craton. Nature, 2004, 432(7019): 892-897.

[16]

Gerbode C, Dasgupta R. Carbonate-Fluxed Melting of MORB-Like Pyroxenite at 2·9 GPa and Genesis of HIMU Ocean Island Basalts. Journal of Petrology, 2010, 51(10): 2067-2088.

[17]

Grassi D, Schmidt M W. Melting of Carbonated Pelites at 8–13 GPa: Generating K-Rich Carbonatites for Mantle Metasomatism. Contributions to Mineralogy and Petrology, 2011, 162(1): 169-191.

[18]

Guzmics T, Berkesi M, Bodnar R J . Natrocarbonatites: A Hidden Product of Three-Phase Immiscibility. Geology, 2019, 47(6): 527-530.

[19]

Guzmics T, Mitchell R H, Szabó C . Carbonatite Melt Inclusions in Coexisting Magnetite, Apatite and Monticellite in Kerimasi Calciocarbonatite, Tanzania: Melt Evolution and Petrogenesis. Contributions to Mineralogy and Petrology, 2011, 161(2): 177-196.

[20]

Guzmics T, Mitchell R H, Szabó C . Liquid Immiscibility between Silicate, Carbonate and Sulfide Melts in Melt Inclusions Hosted in Co-Precipitated Minerals from Kerimasi Volcano (Tanzania): Evolution of Carbonated Nephelinitic Magma. Contributions to Mineralogy and Petrology, 2012, 164(1): 101-122.

[21]

Hammouda T. High-Pressure Melting of Carbonated Eclogite and Experimental Constraints on Carbon Recycling and Storage in the Mantle. Earth and Planetary Science Letters, 2003, 214(1/2): 357-368.

[22]

Hou T, Charlier B, Holtz F . Immiscible Hydrous Fe-Ca-P Melt and the Origin of Iron Oxide-Apatite Ore Deposits. Nature Communications, 2018, 9(1): 1415.

[23]

Huang H, Wang T, Guo L . Crustal Modification Influenced by Multiple Convergent Systems: Insights from Mesozoic Magmatism in Northeastern China. Earth-Science Reviews, 2024, 252 104737.

[24]

Ji Z, Ge W C, Wang Q H . Petrogenesis of Early Cretaceous Volcanic Rocks of the Manketouebo Formation in the Wuchagou Region, Central Great Xing’an Range, NE China, and Tectonic Implications: Geochronological, Geochemical, and Hf Isotopic Evidence. International Geology Review, 2016, 58(5): 556-573.

[25]

Ji Z, Meng Q A, Wan C B . Geodynamic Evolution of Flat-Slab Subduction of Paleo-Pacific Plate: Constraints from Jurassic Adakitic Lavas in the Hailar Basin, NE China. Tectonics, 2019, 38(12): 4301-4319.

[26]

Kiseeva E S, Litasov K D, Yaxley G M . Melting and Phase Relations of Carbonated Eclogite at 9–21 GPa and the Petrogenesis of Alkali-Rich Melts in the Deep Mantle. Journal of Petrology, 2013, 54(8): 1555-1583.

[27]

Kiseeva E S, Yaxley G M, Hermann J . An Experimental Study of Carbonated Eclogite at 3.5 - 5.5 GPa—Implications for Silicate and Carbonate Metasomatism in the Cratonic Mantle. Journal of Petrology, 2012, 53(4): 727-759.

[28]

Kjarsgaard B A, Hamilton D L, Peterson T D Bell K, Keller J. Peralkaline Nephelinite/Carbonatite Liquid Immiscibility: Comparison of Phase Compositions in Experiments and Natural Lavas from Oldoinyo Lengai. Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites, 1995 Berlin, Heidelberg Springer Berlin Heidelberg 163-190.

[29]

Li S G, Yang W, Ke S . Deep Carbon Cycles Constrained by a Large-Scale Mantle Mg Isotope Anomaly in Eastern China. National Science Review, 2017, 4(1): 111-120.

[30]

Litasov K, Ohtani E. The Solidus of Carbonated Eclogite in the System CaO-Al2O3-MgO-SiO2-Na2O-CO2 to 32GPa and Carbonatite Liquid in the Deep Mantle. Earth and Planetary Science Letters, 2010, 295(1/2): 115-126.

[31]

Liu M, Zhang D, Di Y J . Protracted Extraction of High-Silica Melts from an Upper-Crustal Magma Reservoir Recorded by the Wuchagou Volcanic Rocks in Central Great Xing’an Range, NE China. Lithos, 2022, 422 106752.

[32]

Liu S G, Teng F Z, Yang W . High-Temperature Inter-Mineral Magnesium Isotope Fractionation in Mantle Xenoliths from the North China Craton. Earth and Planetary Science Letters, 2011, 308(1/2): 131-140.

[33]

Liu S G, Wang Z Z, Li S G . Zinc Isotope Evidence for a Large-Scale Carbonated Mantle beneath Eastern China. Earth and Planetary Science Letters, 2016, 444 169-178.

[34]

Ma Q, Xu Y G. Magmatic Perspective on Subduction of Paleo-Pacific Plate and Initiation of Big Mantle Wedge in East Asia. Earth-Science Reviews, 2021, 213 103473.

[35]

Ma Q, Zhong Y T, Yin Q Z . High-Resolution Chronostratigraphy of Late Mesozoic Sequences in Northern North China: Implications for the Linkages among Intracontinental Orogeny, Volcanism, Jehol Biota, and Pacific Plate Subduction. Geology, 2024, 52(1): 45-50.

[36]

Meng Q R. What Drove Late Mesozoic Extension of the Northern China–Mongolia Tract?. Tectonophysics, 2003, 369(3/4): 155-174.

[37]

Plank T, Manning C E. Subducting Carbon. Nature, 2019, 574(7778): 343-352.

[38]

Sieber M J, Wilke M, Appelt O . Melting Relations of Ca–Mg Carbonates and Trace Element Signature of Carbonate Melts up to 9 GPa—a Proxy for Melting of Carbonated Mantle Lithologies. European Journal of Mineralogy, 2022, 34(5): 411-424.

[39]

Sverjensky D A, Stagno V, Huang F. Important Role for Organic Carbon in Subduction-Zone Fluids in the Deep Carbon Cycle. Nature Geoscience, 2014, 7 909-913.

[40]

Tang Y J, Zhang H F, Deloule E . Slab-Derived Lithium Isotopic Signatures in Mantle Xenoliths from Northeastern North China Craton. Lithos, 2012, 149 79-90.

[41]

Tang Z Y, Sun D Y, Mao A Q. Geochemistry of Late Mesozoic Volcanic Rocks in the Central Great Xing’an Range, NE China: Petrogenesis and Crustal Growth in Comparison with Adjacent Areas. International Geology Review, 2020, 62(1): 1-28.

[42]

Thomsen T B, Schmidt M W. Melting of Carbonated Pelites at 2.5 - 5.0 GPa, Silicate-Carbonatite Liquid Immiscibility, and Potassium-Carbon Metasomatism of the Mantle. Earth and Planetary Science Letters, 2008, 267(1/2): 17-31.

[43]

Thomson A R, Walter M J, Kohn S C . Slab Melting as a Barrier to Deep Carbon Subduction. Nature, 2016, 529(7584): 76-79.

[44]

Tian H C, Yang W, Li S G . Origin of Low δ26Mg Basalts with EM-I Component: Evidence for Interaction between Enriched Lithosphere and Carbonated Asthenosphere. Geochimica et Cosmochimica Acta, 2016, 188 93-105.

[45]

Wang F, Zhou X H, Zhang L C . Late Mesozoic Volcanism in the Great Xing’an Range (NE China): Timing and Implications for the Dynamic Setting of NE Asia. Earth and Planetary Science Letters, 2006, 251(1/2): 179-198.

[46]

Windley B F, Alexeiev D, Xiao W J . Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 2007, 164(1): 31-47.

[47]

Wu F Y, Lin J Q, Wilde S A . Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 2005, 233(1/2): 103-119.

[48]

Xu X S, O’Reilly S Y, Griffin W L Flower M F J, Chung S L, Lo C H . The Nature of the Cenozoic Lithosphere at Nushan, Eastern China. Geodynamics Series., 1998 Washington, D. C. American Geophysical Union 167-195

[49]

Yang W B, Niu H C, Cheng L R . Geochronology, Geochemistry and Geodynamic Implications of the Late Mesozoic Volcanic Rocks in the Southern Great Xing’an Mountains, NE China. Journal of Asian Earth Sciences, 2015, 113 454-470.

[50]

Yang W, Teng F Z, Zhang H F . Magnesium Isotopic Systematics of Continental Basalts from the North China Craton: Implications for Tracing Subducted Carbonate in the Mantle. Chemical Geology, 2012, 328 185-194.

[51]

Yaxley G M, Brey G P. Phase Relations of Carbonate-Bearing Eclogite Assemblages from 2.5 to 5.5 GPa: Implications for Petrogenesis of Carbonatites. Contributions to Mineralogy and Petrology, 2004, 146(5): 606-619.

[52]

Ying J F, Zhou X H, Zhang L C . Geochronological and Geochemical Investigation of the Late Mesozoic Volcanic Rocks from the Northern Great Xing’an Range and Their Tectonic Implications. International Journal of Earth Sciences, 2010, 99(2): 357-378.

[53]

Zhang C, Ma C Q, Liao Q N . Implications of Subduction and Subduction Zonemigration of the Paleo-Pacific Plate Beneath Eastern North China, Based on Distribution, Geochronology, and Geochemistry of Late Mesozoic Volcanic Rocks. International Journal of Earth Sciences, 2011, 100(7): 1665-1684.

[54]

Zhang J H, Ge W C, Wu F Y . Large-Scale Early Cretaceous Volcanic Events in the Northern Great Xing’an Range, Northeastern China. Lithos, 2008, 102(1/2): 138-157.

[55]

Zhao D P, Tian Y, Lei J S . Seismic Image and Origin of the Changbai Intraplate Volcano in East Asia: Role of Big Mantle Wedge above the Stagnant Pacific Slab. Physics of the Earth and Planetary Interiors, 2009, 173(3/4): 197-206.

[56]

Zhou X H, Armstrong R L. Cenozoic Volcanic Rocks of Eastern China—Secular and Geographic Trends in Chemistry and Strontium Isotopic Composition. Earth and Planetary Science Letters, 1982, 58(3): 301-329.

[57]

Zhou Z H, Meng Q R, Zhu R X . Spatiotemporal Evolution of the Jehol Biota: Responses to the North China Craton Destruction in the Early Cretaceous. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(34): e2107859118.

[58]

Zou Z Q, Wang Z C, Wang X J . Calcium Isotopic Compositions of Eclogite Melts and Negligible Modification during Reaction with Lithospheric Mantle. Geochimica et Cosmochimica Acta, 2024, 367 58-71.

RIGHTS & PERMISSIONS

China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature

AI Summary AI Mindmap
PDF

230

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/