Coexisting Carbonatite and Silicate Melt Inclusions in the Cretaceous Volcanic Rock from the Central Great Xing’an Range, Northeast China: Evidence for Recycled Carbonate from Subducted Paleo-Pacific Plate

Chao Zhang, Hongxu Pu, Jianqiang Liu, Xiaojun Wang, Wenqiang Yang, Zhenbing She, Shitou Wu, Gang Zeng, Lihui Chen, Francois Holtz

Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (1) : 364-372.

Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (1) : 364-372. DOI: 10.1007/s12583-024-0135-8
Editorial

Coexisting Carbonatite and Silicate Melt Inclusions in the Cretaceous Volcanic Rock from the Central Great Xing’an Range, Northeast China: Evidence for Recycled Carbonate from Subducted Paleo-Pacific Plate

Author information +
History +

Cite this article

Download citation ▾
Chao Zhang, Hongxu Pu, Jianqiang Liu, Xiaojun Wang, Wenqiang Yang, Zhenbing She, Shitou Wu, Gang Zeng, Lihui Chen, Francois Holtz. Coexisting Carbonatite and Silicate Melt Inclusions in the Cretaceous Volcanic Rock from the Central Great Xing’an Range, Northeast China: Evidence for Recycled Carbonate from Subducted Paleo-Pacific Plate. Journal of Earth Science, 2025, 36(1): 364‒372 https://doi.org/10.1007/s12583-024-0135-8

References

[]
Berkesi M, Bali E, Bodnar R J . Carbonatite and Highly Peralkaline Nephelinite Melts from Oldoinyo Lengai Volcano, Tanzania: The Role of Natrite-Normative Fluid Degassing. Gondwana Research, 2020, 85 76-83.
CrossRef Google scholar
[]
Berndt J, Klemme S. Origin of Carbonatites-Liquid Immiscibility Caught in the Act. Nature Communications, 2022, 13(1): 2892.
CrossRef Google scholar
[]
Carter L B, Dasgupta R. Hydrous Basalt-Limestone Interaction at Crustal Conditions: Implications for Generation of Ultracalcic Melts and Outflux of CO2 at Volcanic Arcs. Earth and Planetary Science Letters, 2015, 427 202-214.
CrossRef Google scholar
[]
Charlier B, Grove T L. Experiments on Liquid Immiscibility along Tholeiitic Liquid Lines of Descent. Contributions to Mineralogy and Petrology, 2012, 164(1): 27-44.
CrossRef Google scholar
[]
Chen C F, Förster M W, Foley S F . Carbonate-Rich Crust Subduction Drives the Deep Carbon and Chlorine Cycles. Nature, 2023, 620(7974): 576-581.
CrossRef Google scholar
[]
Chen W, Kamenetsky V S, Simonetti A. Evidence for the Alkaline Nature of Parental Carbonatite Melts at Oka Complex in Canada. Nature Communications, 2013, 4(1): 2687.
CrossRef Google scholar
[]
Dasgupta R, Hirschmann M M. The Deep Carbon Cycle and Melting in Earth’s Interior. Earth and Planetary Science Letters, 2010, 298(1/2): 1-13.
CrossRef Google scholar
[]
Dasgupta R, Hirschmann M M, Smith N D. Partial Melting Experiments of Peridotite + CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts. Journal of Petrology, 2007, 48(11): 2093-2124.
CrossRef Google scholar
[]
Dasgupta R, Hirschmann M M, Stalker K. Immiscible Transition from Carbonate-Rich to Silicate-Rich Melts in the 3 GPa Melting Interval of Eclogite + CO2 and Genesis of Silica Undersaturated Ocean Island Lavas. Journal of Petrology, 2006, 47(4): 647-671.
CrossRef Google scholar
[]
Dasgupta R, Mallik A, Tsuno K . Carbon-Dioxide-Rich Silicate Melt in the Earth’ s Upper Mantle. Nature, 2013, 493(7431): 211-215.
CrossRef Google scholar
[]
Dong Y, Ge W C, Yang H . Geochronology and Geochemistry of Early Cretaceous Volcanic Rocks from the Baiyingaolao Formation in the Central Great Xing’ an Range, NE China, and Its Tectonic Implications. Lithos, 2014, 205 168-184.
CrossRef Google scholar
[]
Eguchi J, Dasgupta R. A CO2 Solubility Model for Silicate Melts from Fluid Saturation to Graphite or Diamond Saturation. Chemical Geology, 2018, 487 23-38.
CrossRef Google scholar
[]
Erdmann S, Chen L H, Liu J Q . Hot, Volatile-Poor, and Oxidized Magmatism above the Stagnant Pacific Plate in Eastern China in the Cenozoic. Geochemistry, Geophysics, Geosystems, 2019, 20(11): 4849-4868.
CrossRef Google scholar
[]
Fischer L A, Wang M, Charlier B . Immiscible Iron- and Silica-Rich Liquids in the Upper Zone of the Bushveld Complex. Earth and Planetary Science Letters, 2016, 443 108-117.
CrossRef Google scholar
[]
Gao S, Rudnick R L, Yuan H L . Recycling Lower Continental Crust in the North China Craton. Nature, 2004, 432(7019): 892-897.
CrossRef Google scholar
[]
Gerbode C, Dasgupta R. Carbonate-Fluxed Melting of MORB-Like Pyroxenite at 2·9 GPa and Genesis of HIMU Ocean Island Basalts. Journal of Petrology, 2010, 51(10): 2067-2088.
CrossRef Google scholar
[]
Grassi D, Schmidt M W. Melting of Carbonated Pelites at 8–13 GPa: Generating K-Rich Carbonatites for Mantle Metasomatism. Contributions to Mineralogy and Petrology, 2011, 162(1): 169-191.
CrossRef Google scholar
[]
Guzmics T, Berkesi M, Bodnar R J . Natrocarbonatites: A Hidden Product of Three-Phase Immiscibility. Geology, 2019, 47(6): 527-530.
CrossRef Google scholar
[]
Guzmics T, Mitchell R H, Szabó C . Carbonatite Melt Inclusions in Coexisting Magnetite, Apatite and Monticellite in Kerimasi Calciocarbonatite, Tanzania: Melt Evolution and Petrogenesis. Contributions to Mineralogy and Petrology, 2011, 161(2): 177-196.
CrossRef Google scholar
[]
Guzmics T, Mitchell R H, Szabó C . Liquid Immiscibility between Silicate, Carbonate and Sulfide Melts in Melt Inclusions Hosted in Co-Precipitated Minerals from Kerimasi Volcano (Tanzania): Evolution of Carbonated Nephelinitic Magma. Contributions to Mineralogy and Petrology, 2012, 164(1): 101-122.
CrossRef Google scholar
[]
Hammouda T. High-Pressure Melting of Carbonated Eclogite and Experimental Constraints on Carbon Recycling and Storage in the Mantle. Earth and Planetary Science Letters, 2003, 214(1/2): 357-368.
CrossRef Google scholar
[]
Hou T, Charlier B, Holtz F . Immiscible Hydrous Fe-Ca-P Melt and the Origin of Iron Oxide-Apatite Ore Deposits. Nature Communications, 2018, 9(1): 1415.
CrossRef Google scholar
[]
Huang H, Wang T, Guo L . Crustal Modification Influenced by Multiple Convergent Systems: Insights from Mesozoic Magmatism in Northeastern China. Earth-Science Reviews, 2024, 252 104737.
CrossRef Google scholar
[]
Ji Z, Ge W C, Wang Q H . Petrogenesis of Early Cretaceous Volcanic Rocks of the Manketouebo Formation in the Wuchagou Region, Central Great Xing’an Range, NE China, and Tectonic Implications: Geochronological, Geochemical, and Hf Isotopic Evidence. International Geology Review, 2016, 58(5): 556-573.
CrossRef Google scholar
[]
Ji Z, Meng Q A, Wan C B . Geodynamic Evolution of Flat-Slab Subduction of Paleo-Pacific Plate: Constraints from Jurassic Adakitic Lavas in the Hailar Basin, NE China. Tectonics, 2019, 38(12): 4301-4319.
CrossRef Google scholar
[]
Kiseeva E S, Litasov K D, Yaxley G M . Melting and Phase Relations of Carbonated Eclogite at 9–21 GPa and the Petrogenesis of Alkali-Rich Melts in the Deep Mantle. Journal of Petrology, 2013, 54(8): 1555-1583.
CrossRef Google scholar
[]
Kiseeva E S, Yaxley G M, Hermann J . An Experimental Study of Carbonated Eclogite at 3.5 - 5.5 GPa—Implications for Silicate and Carbonate Metasomatism in the Cratonic Mantle. Journal of Petrology, 2012, 53(4): 727-759.
CrossRef Google scholar
[]
Kjarsgaard B A, Hamilton D L, Peterson T D Bell K, Keller J. Peralkaline Nephelinite/Carbonatite Liquid Immiscibility: Comparison of Phase Compositions in Experiments and Natural Lavas from Oldoinyo Lengai. Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites, 1995 Berlin, Heidelberg Springer Berlin Heidelberg 163-190.
CrossRef Google scholar
[]
Li S G, Yang W, Ke S . Deep Carbon Cycles Constrained by a Large-Scale Mantle Mg Isotope Anomaly in Eastern China. National Science Review, 2017, 4(1): 111-120.
CrossRef Google scholar
[]
Litasov K, Ohtani E. The Solidus of Carbonated Eclogite in the System CaO-Al2O3-MgO-SiO2-Na2O-CO2 to 32GPa and Carbonatite Liquid in the Deep Mantle. Earth and Planetary Science Letters, 2010, 295(1/2): 115-126.
CrossRef Google scholar
[]
Liu M, Zhang D, Di Y J . Protracted Extraction of High-Silica Melts from an Upper-Crustal Magma Reservoir Recorded by the Wuchagou Volcanic Rocks in Central Great Xing’an Range, NE China. Lithos, 2022, 422 106752.
CrossRef Google scholar
[]
Liu S G, Teng F Z, Yang W . High-Temperature Inter-Mineral Magnesium Isotope Fractionation in Mantle Xenoliths from the North China Craton. Earth and Planetary Science Letters, 2011, 308(1/2): 131-140.
CrossRef Google scholar
[]
Liu S G, Wang Z Z, Li S G . Zinc Isotope Evidence for a Large-Scale Carbonated Mantle beneath Eastern China. Earth and Planetary Science Letters, 2016, 444 169-178.
CrossRef Google scholar
[]
Ma Q, Xu Y G. Magmatic Perspective on Subduction of Paleo-Pacific Plate and Initiation of Big Mantle Wedge in East Asia. Earth-Science Reviews, 2021, 213 103473.
CrossRef Google scholar
[]
Ma Q, Zhong Y T, Yin Q Z . High-Resolution Chronostratigraphy of Late Mesozoic Sequences in Northern North China: Implications for the Linkages among Intracontinental Orogeny, Volcanism, Jehol Biota, and Pacific Plate Subduction. Geology, 2024, 52(1): 45-50.
CrossRef Google scholar
[]
Meng Q R. What Drove Late Mesozoic Extension of the Northern China–Mongolia Tract?. Tectonophysics, 2003, 369(3/4): 155-174.
CrossRef Google scholar
[]
Plank T, Manning C E. Subducting Carbon. Nature, 2019, 574(7778): 343-352.
CrossRef Google scholar
[]
Sieber M J, Wilke M, Appelt O . Melting Relations of Ca–Mg Carbonates and Trace Element Signature of Carbonate Melts up to 9 GPa—a Proxy for Melting of Carbonated Mantle Lithologies. European Journal of Mineralogy, 2022, 34(5): 411-424.
CrossRef Google scholar
[]
Sverjensky D A, Stagno V, Huang F. Important Role for Organic Carbon in Subduction-Zone Fluids in the Deep Carbon Cycle. Nature Geoscience, 2014, 7 909-913.
CrossRef Google scholar
[]
Tang Y J, Zhang H F, Deloule E . Slab-Derived Lithium Isotopic Signatures in Mantle Xenoliths from Northeastern North China Craton. Lithos, 2012, 149 79-90.
CrossRef Google scholar
[]
Tang Z Y, Sun D Y, Mao A Q. Geochemistry of Late Mesozoic Volcanic Rocks in the Central Great Xing’an Range, NE China: Petrogenesis and Crustal Growth in Comparison with Adjacent Areas. International Geology Review, 2020, 62(1): 1-28.
CrossRef Google scholar
[]
Thomsen T B, Schmidt M W. Melting of Carbonated Pelites at 2.5 - 5.0 GPa, Silicate-Carbonatite Liquid Immiscibility, and Potassium-Carbon Metasomatism of the Mantle. Earth and Planetary Science Letters, 2008, 267(1/2): 17-31.
CrossRef Google scholar
[]
Thomson A R, Walter M J, Kohn S C . Slab Melting as a Barrier to Deep Carbon Subduction. Nature, 2016, 529(7584): 76-79.
CrossRef Google scholar
[]
Tian H C, Yang W, Li S G . Origin of Low δ26Mg Basalts with EM-I Component: Evidence for Interaction between Enriched Lithosphere and Carbonated Asthenosphere. Geochimica et Cosmochimica Acta, 2016, 188 93-105.
CrossRef Google scholar
[]
Wang F, Zhou X H, Zhang L C . Late Mesozoic Volcanism in the Great Xing’an Range (NE China): Timing and Implications for the Dynamic Setting of NE Asia. Earth and Planetary Science Letters, 2006, 251(1/2): 179-198.
CrossRef Google scholar
[]
Windley B F, Alexeiev D, Xiao W J . Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 2007, 164(1): 31-47.
CrossRef Google scholar
[]
Wu F Y, Lin J Q, Wilde S A . Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 2005, 233(1/2): 103-119.
CrossRef Google scholar
[]
Xu X S, O’Reilly S Y, Griffin W L Flower M F J, Chung S L, Lo C H . The Nature of the Cenozoic Lithosphere at Nushan, Eastern China. Geodynamics Series., 1998 Washington, D. C. American Geophysical Union 167-195
[]
Yang W B, Niu H C, Cheng L R . Geochronology, Geochemistry and Geodynamic Implications of the Late Mesozoic Volcanic Rocks in the Southern Great Xing’an Mountains, NE China. Journal of Asian Earth Sciences, 2015, 113 454-470.
CrossRef Google scholar
[]
Yang W, Teng F Z, Zhang H F . Magnesium Isotopic Systematics of Continental Basalts from the North China Craton: Implications for Tracing Subducted Carbonate in the Mantle. Chemical Geology, 2012, 328 185-194.
CrossRef Google scholar
[]
Yaxley G M, Brey G P. Phase Relations of Carbonate-Bearing Eclogite Assemblages from 2.5 to 5.5 GPa: Implications for Petrogenesis of Carbonatites. Contributions to Mineralogy and Petrology, 2004, 146(5): 606-619.
CrossRef Google scholar
[]
Ying J F, Zhou X H, Zhang L C . Geochronological and Geochemical Investigation of the Late Mesozoic Volcanic Rocks from the Northern Great Xing’an Range and Their Tectonic Implications. International Journal of Earth Sciences, 2010, 99(2): 357-378.
CrossRef Google scholar
[]
Zhang C, Ma C Q, Liao Q N . Implications of Subduction and Subduction Zonemigration of the Paleo-Pacific Plate Beneath Eastern North China, Based on Distribution, Geochronology, and Geochemistry of Late Mesozoic Volcanic Rocks. International Journal of Earth Sciences, 2011, 100(7): 1665-1684.
CrossRef Google scholar
[]
Zhang J H, Ge W C, Wu F Y . Large-Scale Early Cretaceous Volcanic Events in the Northern Great Xing’an Range, Northeastern China. Lithos, 2008, 102(1/2): 138-157.
CrossRef Google scholar
[]
Zhao D P, Tian Y, Lei J S . Seismic Image and Origin of the Changbai Intraplate Volcano in East Asia: Role of Big Mantle Wedge above the Stagnant Pacific Slab. Physics of the Earth and Planetary Interiors, 2009, 173(3/4): 197-206.
CrossRef Google scholar
[]
Zhou X H, Armstrong R L. Cenozoic Volcanic Rocks of Eastern China—Secular and Geographic Trends in Chemistry and Strontium Isotopic Composition. Earth and Planetary Science Letters, 1982, 58(3): 301-329.
CrossRef Google scholar
[]
Zhou Z H, Meng Q R, Zhu R X . Spatiotemporal Evolution of the Jehol Biota: Responses to the North China Craton Destruction in the Early Cretaceous. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(34): e2107859118.
CrossRef Google scholar
[]
Zou Z Q, Wang Z C, Wang X J . Calcium Isotopic Compositions of Eclogite Melts and Negligible Modification during Reaction with Lithospheric Mantle. Geochimica et Cosmochimica Acta, 2024, 367 58-71.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/