Ongoing Compressional Tectonism and Regional Seismic Hazard Revealed by the 2023 Mw6.1 Jishishan Earthquake

Xiaoning Hu, Chen Yu, Zhenjiang Liu, Yingying Zhang, Zhenhong Li, Chuang Song, Bingquan Han, Haihui Liu, Jie Li

Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (1) : 275-290.

Journal of Earth Science All Journals
Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (1) : 275-290. DOI: 10.1007/s12583-024-0126-9
Engineering Geology and Geohazards

Ongoing Compressional Tectonism and Regional Seismic Hazard Revealed by the 2023 Mw6.1 Jishishan Earthquake

Author information +
History +

Abstract

On December 18, 2023, a Mw6.1 earthquake struck Jishishan County, Gansu Province, China, marking the most significant earthquake in the northeastern edge of the Tibetan Plateau since 2000. Given its proximate to the Loess Plateau, which is extremely susceptible to geohazards, this earthquake raises awareness about the seismic hazard of several mega-cities such as Xi’an in Northwest China. In this paper, we inferred that the rupture occurred on an east-dipping backthrust, resulting from the regional E-W contraction tectonic setting. Our dynamic model through teleseismic waves and static model through radar displacement measurements together reveal a unilateral, along-strike rupture, encountering a slip barrier at one side of the main slip patch causing a cluster of aftershocks. We also identified a high-dip structure, which is an early-stage backthrust fault whose dip becomes increasingly high due to regional compressional tectonism. Apart from the loaded fault segments, particularly on the fault linkage, which necessitate continuous examination, a detailed seismic hazard assessment of the west Qinling and Daotanghe-Linxia fault system identifies a seismic gap between Weiyuan and Dingxi with the potential for a Mw7.5 earthquake. Collectively, these findings provide valuable insights into the seismic behavior of the seismogenic fault as well as guidance on hazard mitigation in its surrounding fault systems.

Cite this article

Download citation ▾
Xiaoning Hu, Chen Yu, Zhenjiang Liu, Yingying Zhang, Zhenhong Li, Chuang Song, Bingquan Han, Haihui Liu, Jie Li. Ongoing Compressional Tectonism and Regional Seismic Hazard Revealed by the 2023 Mw6.1 Jishishan Earthquake. Journal of Earth Science, 2025, 36(1): 275‒290 https://doi.org/10.1007/s12583-024-0126-9
This is a preview of subscription content, contact us for subscripton.

References

Abrahamson N A, Silva W J. Empirical Response Spectral Attenuation Relations for Shallow Crustal Earthquakes. Seismological Research Letters, 1997, 68(1): 94-127.
CrossRef Google scholar
Aki K. Characterization of Barriers on an Earthquake Fault. Journal of Geophysical Research: Solid Earth, 1979, 84(B11): 6140-6148.
CrossRef Google scholar
Bao H, Ampuero J P, Meng L S . Early and Persistent Supershear Rupture of the 2018 Magnitude 7.5 Palu Earthquake. Nature Geoscience, 2019, 12(3): 200-205.
CrossRef Google scholar
Bloch W, Metzger S, Schurr B . The 2015–2017 Pamir Earthquake Sequence: Foreshocks, Main Shocks and Aftershocks, Seismotectonics, Fault Interaction and Fluid Processes. Geophysical Journal International, 2022, 233(1): 641-662.
CrossRef Google scholar
Brune J N. Seismic Moment, Seismicity, and Rate of Slip along Major Fault Zones. Journal of Geophysical Research, 1968, 73(2): 777-784.
CrossRef Google scholar
Chen, B., Song, C., Chen, Y., et al., 2024. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Damages Induced by the 2023 Ms 6.2 Jishishan (Gansu, China) Earthquake. Geomatics and Information Science of Wuhan University. https://doi.org/10.13203/J.whugis20230497 (in Chinese with English Abstract)
Chen P Active Tectonics of the Northeastern Tibetan Plateau: [Dissertation], 2019 Kyoto Kyoto University
Chen P, Lin A M. Tectonic Topography and Late Pleistocene Activity of the West Qinling Fault, Northeastern Tibetan Plateau. Journal of Asian Earth Sciences, 2019, 176 68-78.
CrossRef Google scholar
Chen P, Shi W, Hu J M . Identification of the Seismogenic Fault of the 1654 M8.0 Tianshui Earthquake, Northeastern Tibetan Plateau. Seismological Research Letters, 2021, 92(5): 2943-2951.
CrossRef Google scholar
China Earthquake Compendium Compilation Group Chinese Earthquake Compendium (780 BC–1986 AD), 1988 Beijing Seismological Press 1-155 (in Chinese)
Clark M K, Farley K A, Zheng D W . Early Cenozoic Faulting of the Northern Tibetan Plateau Margin from Apatite (U-Th)/He Ages. Earth and Planetary Science Letters, 2010, 296(1/2): 78-88.
CrossRef Google scholar
Correa-Mora F, DeMets C, Cabral-Cano E . Interplate Coupling and Transient Slip along the Subduction Interface beneath Oaxaca, Mexico. Geophysical Journal International, 2008, 175(1): 269-290.
CrossRef Google scholar
Costantini M. A Novel Phase Unwrapping Method Based on Network Programming. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 813-821.
CrossRef Google scholar
Deng Y F, Peng Z G, Jing L Z. Systematic Search for Repeating Earthquakes along the Haiyuan Fault System in Northeastern Tibet. Journal of Geophysical Research (Solid Earth), 2020, 125(7): e2020JB019583.
CrossRef Google scholar
Dong A N, Dou J, Li C D . Accelerating Cross-Scene Co-Seismic Landslide Detection through Progressive Transfer Learning and Lightweight Deep Learning Strategies. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62 4410213.
CrossRef Google scholar
Dou J, Xiang Z L, Xu Q . Application and Development Trend of Machine Learning in Landslide Intelligent Disaster Prevention and Mitigation. Earth Science, 2023, 48(5): 1657-1674 (in Chinese with English Abstract)
Dou J, Yunus A P, Merghadi A . Different Sampling Strategies for Predicting Landslide Susceptibilities Are Deemed less Consequential with Deep Learning. Science of the Total Environment, 2020, 720 137320.
CrossRef Google scholar
Du H L, Xu L S, Chen Y T. Rupture Process of the 2008 Great Wenchuan Earthquake from the Analysis of the Alaska-Array Data. Chinese Journal of Geophysics, 2009, 52 372-378 (in Chinese with English Abstract)
England P, Molnar P. Right-Lateral Shear and Rotation as the Explanation for Strike-Slip Faulting in Eastern Tibet. Nature, 1990, 344(6262): 140-142.
CrossRef Google scholar
Fang X M, Liu D L, Song C H . Oligocene Slow and Miocene-Quaternary Rapid Deformation and Uplift of the Yumu Shan and North Qilian Shan: Evidence from High-Resolution Magnetostratigraphy and Tectonosedimentology. Geological Society of London Special Publications, 2013, 373(1): 149-171.
CrossRef Google scholar
Feng W P, Li Z H. A Novel Hybrid PSO/Simplex Algorithm for Determining Earthquake Source Parameters Using InSAR Data. Progress in Geophysics, 2010, 25(4): 1189-1196
Feng W P, Samsonov S, Qiu Q . Orthogonal Fault Rupture and Rapid Postseismic Deformation Following 2019 Ridgecrest, California, Earthquake Sequence Revealed from Geodetic Observations. Geophysical Research Letters, 2020, 47(5): e2019GL086888.
CrossRef Google scholar
Feng W P, Xu L S, Xu Z H . Source Parameters of the 2008 Gerze Mw6.4 and Mw5.9 Earthquakes from InSAR Measurements. Chinese Journal of Geophysics, 2009, 52(4): 983-993 (in Chinese with English Abstract)
Freed A M. Earthquake Triggering by Static, Dynamic, and Postseismic Stress Transfer. Annual Review of Earth and Planetary Sciences, 2005, 33 335-367.
CrossRef Google scholar
Fukahata Y, Wright T J. A Non-Linear Geodetic Data Inversion Using ABIC for Slip Distribution on a Fault with an Unknown Dip Angle. Geophysical Journal International, 2008, 173(2): 353-364.
CrossRef Google scholar
Guo Z Q, Ogata Y. Correlation between Characteristic Parameters of Aftershock Distributions in Time, Space and Magnitude. Geophysical Research Letters, 1995, 22(8): 993-996.
CrossRef Google scholar
Han L F, Jing L Z, Yao W Q . Coseismic Slip Gradient at the Western Terminus of the 1920 Haiyuan Mw 7.9 Earthquake. Journal of Structural Geology, 2021, 152(1): 104442.
CrossRef Google scholar
Hardebeck J L, Llenos A L, Michael A J . Aftershock Forecasting. Annual Review of Earth and Planetary Sciences, 2024, 52(1): 61-84.
CrossRef Google scholar
Heidarzadeh M, Ishibe T, Harada T . High Potential for Splay Faulting in the Molucca Sea, Indonesia: November 2019 Mw 7.2 Earthquake and Tsunami. Seismological Research Letters, 2021, 92(5): 2915-2926.
CrossRef Google scholar
Hirano S. Modeling of Unilateral Rupture along very Long Reverse Faults. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 1057-1071.
CrossRef Google scholar
Hough B G, Garzione C N, Wang Z . Stable Isotope Evidence for Topographic Growth and Basin Segmentation: Implications for the Evolution of the NE Tibetan Plateau. Geological Society of America Bulletin, 2011, 123(1/2): 168-185.
CrossRef Google scholar
Huang R Q, Li W L. Analysis of the Geo-Hazards Triggered by the 12 May 2008 Wenchuan Earthquake, China. Bulletin of Engineering Geology and the Environment, 2009, 68(3): 363-371.
CrossRef Google scholar
Ishii M, Shearer P M, Houston H . Extent, Duration and Speed of the 2004 Sumatra-Andaman Earthquake Imaged by the Hi-Net Array. Nature, 2005, 435(7044): 933-936.
CrossRef Google scholar
Ishii M, Shearer P M, Houston H . Teleseismic P Wave Imaging of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Sumatra Earthquake Ruptures Using the Hi-Net Array. Journal of Geophysical Research: Solid Earth, 2007, 112(B11): B11307.
CrossRef Google scholar
Kaverina A, Dreger D, Price E. The Combined Inversion of Seismic and Geodetic Data for the Source Process of the 16 October 1999 Mw 7.1 Hector Mine, California, Earthquake. Bulletin of the Seismological Society of America, 2002, 92(4): 1266-1280.
CrossRef Google scholar
Kikuchi M, Kanamori H. Inversion of Complex Body Waves—III. Bulletin of the Seismological Society of America, 1991, 81(6): 2335-2350.
CrossRef Google scholar
King G C P, Stein R S, Lin J. Static Stress Changes and the Triggering of Earthquakes. Bulletin-Seismological Society of America, 1994, 84(3): 935-953
Kiser E, Ishii M. Back-Projection Imaging of Earthquakes. Annual Review of Earth and Planetary Sciences, 2017, 45 271-299.
CrossRef Google scholar
Krüger F, Ohrnberger M. Tracking the Rupture of the Mw = 9.3 Sumatra Earthquake over 1 150 km at Teleseismic Distance. Nature, 2005, 435(7044): 937-939.
CrossRef Google scholar
Lease R O, Burbank D W, Clark M K . Middle Miocene Reorganization of Deformation along the Northeastern Tibetan Plateau. Geology, 2011, 39(4): 359-362.
CrossRef Google scholar
Lease R O, Burbank D W, Zhang H P . Cenozoic Shortening Budget for the Northeastern Edge of the Tibetan Plateau: Is Lower Crustal Flow Necessary?. Tectonics, 2012, 31(3): TC3011.
CrossRef Google scholar
Li K, Tapponnier P, Xu X W . The 2022, Ms 6.9 Menyuan Earthquake: Surface Rupture, Paleozoic Suture Re-Activation, Slip-Rate and Seismic Gap along the Haiyuan Fault System, NE Tibet. Earth and Planetary Science Letters, 2023, 622 118412.
CrossRef Google scholar
Li Z M, Tian Q J, Tu H W. Remote Sensing Characteristics of Lajishan Fault. Plateau Earthquake Research, 2009, 21(1): 26-31 (in Chinese with English Abstract)
Lin J, Stein R S. Stress Triggering in Thrust and Subduction Earthquakes and Stress Interaction between the Southern San Andreas and nearby Thrust and Strike-Slip Faults. Journal of Geophysical Research: Solid Earth, 2004, 109(B2): B02303.
CrossRef Google scholar
McGuire J J, Zhao L, Jordan T H. Predominance of Unilateral Rupture for a Global Catalog of Large Earthquakes. Bulletin of the Seismological Society of America, 2002, 92(8): 3309-3317.
CrossRef Google scholar
Meng L S, Inbal A, Ampuero J P. A Window into the Complexity of the Dynamic Rupture of the 2011 Mw 9 Tohoku-Oki Earthquake. Geophysical Research Letters, 2011, 38(7): L00G07.
CrossRef Google scholar
Meng L S, Zhang A L, Yagi Y. Improving back Projection Imaging with a Novel Physics-Based Aftershock Calibration Approach: A Case Study of the 2015 Gorkha Earthquake. Geophysical Research Letters, 2016, 43(2): 628-636.
CrossRef Google scholar
Molnar P, Tapponnier P. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of Recent Continental Tectonics in Asia Can Be Interpreted as Results of the India-Eurasia Collision. Science, 1975, 189(4201): 419-426.
CrossRef Google scholar
Morad D, Lyakhovsky V, Hatzor Y H . Stress Heterogeneity and the Onset of Faulting along Geometrically Irregular Faults. Geophysical Research Letters, 2022, 49(17): e2021GL097591.
CrossRef Google scholar
Nanjo K, Nagahama H. Spatial Distribution of Aftershocks and the Fractal Structure of Active Fault Systems. Pure and Applied Geophysics, 2000, 157(4): 575-588.
CrossRef Google scholar
Ninomiya Y, Fu B H. Regional Lithological Mapping in the Tibetan Plateau and Surrounding Area Using Aster Data. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). July 10–15, 2016, 2016 6356-6359
Okada Y. Internal Deformation Due to Shear and Tensile Faults in a Half-Space. Bulletin of the Seismological Society of America, 1992, 82(2): 1018-1040.
CrossRef Google scholar
Ozawa S, Ando R, Dunham E M. Quantifying the Probability of Rupture Arrest at Restraining and Releasing Bends Using Earthquake Sequence Simulations. Earth and Planetary Science Letters, 2023, 617 118276.
CrossRef Google scholar
Pan J W, Li H B, Chevalier M L . Co-Seismic Rupture of the 2021, Mw 7.4 Maduo Earthquake (Northern Tibet): Short-Cutting of the Kunlun Fault Big Bend. Earth and Planetary Science Letters, 2022, 594 117703.
CrossRef Google scholar
Pan J W, Li H B, Si J L . Rupture Process of the Wenchuan Earthquake (Mw 7.9) from Surface Ruptures and Fault Striations Characteristics. Tectonophysics, 2014, 619/620 13-28.
CrossRef Google scholar
Peltzer G, Tapponnier P, Zhang Z T . Neogene and Quaternary Faulting in and along the Qinling Shan. Nature, 1985, 317(6037): 500-505.
CrossRef Google scholar
Qi S W, Xu Q, Lan H X . Spatial Distribution Analysis of Landslides Triggered by 2008.5.12 Wenchuan Earthquake, China. Engineering Geology, 2010, 116(1/2): 95-108.
CrossRef Google scholar
Sato H P, Sekiguchi T, Kojiroi R . Overlaying Landslides Distribution on the Earthquake Source, Geological and Topographical Data: The Mid Niigata Prefecture Earthquake in 2004, Japan. Landslides, 2005, 2(2): 143-152.
CrossRef Google scholar
Sherrod B, Gomberg J. Crustal Earthquake Triggering by Pre-Historic Great Earthquakes on Subduction Zone Thrusts. Journal of Geophysical Research: Solid Earth, 2014, 119(2): 1273-1294.
CrossRef Google scholar
Sreejith K M, Sunil P S, Agrawal R . Coseismic and Early Postseismic Deformation Due to the 25 April 2015, Mw 7.8 Gorkha, Nepal, Earthquake from InSAR and GPS Measurements. Geophysical Research Letters, 2016, 43(7): 3160-3168.
CrossRef Google scholar
Sykes L R. Aftershock Zones of Great Earthquakes, Seismicity Gaps, and Earthquake Prediction for Alaska and the Aleutians. Journal of Geophysical Research, 1971, 76(32): 8021-8041.
CrossRef Google scholar
Sykes L R. Intraplate Seismicity, Reactivation of Preexisting Zones of Weakness, Alkaline Magmatism, and Other Tectonism Postdating Continental Fragmentation. Reviews of Geophysics, 1978, 16(4): 621-688.
CrossRef Google scholar
Tapponnier P, Peltzer G, Le Dain A Y . Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology, 1982, 10(12): 611.
CrossRef Google scholar
Tapponnier P, Xu Z Q, Roger F . Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 2001, 294(5547): 1671-1677.
CrossRef Google scholar
Tian J J, Li T T, Pei X J . Experimental Study on Multistage Seismic Damage Process of Bedding Rock Slope: A Case Study of the Xinmo Landslide. Journal of Earth Science, 2024, 35(5): 1594-1612.
CrossRef Google scholar
Tian X B, Zhang Z J. Bulk Crustal Properties in NE Tibet and Their Implications for Deformation Model. Gondwana Research, 2013, 24(2): 548-559.
CrossRef Google scholar
Waldhauser F, Ellsworth W L. A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. The Bulletin of the Seismological Society of America, 2000, 90(6): 1353-1368.
CrossRef Google scholar
Wang E Q, Zhang Q, Burchfiel C B. Qinghai Laji Mountain: A Multi-Stage Uplifting Structural Window. Geological Sciences, 2000, 35(4): 8 (in Chinese with English Abstract)
Wang L M, Wu Z J, Xia K . Amplification of Thickness and Topography of Loess Deposit on Seismic Ground Motion and Its Seismic Design Methods. Soil Dynamics and Earthquake Engineering, 2019, 126 105090.
CrossRef Google scholar
Watson A R, Elliott J R, Walters R J. Interseismic Strain Accumulation across the Main Recent Fault, SW Iran, from Sentinel-1 InSAR Observations. Journal of Geophysical Research: Solid Earth, 2022, 127(2): e2021JB022674.
CrossRef Google scholar
Wegnüller U, Werner C, Strozzi T . Sentinel-1 Support in the GAMMA Software. Procedia Computer Science, 2016, 100 1305-1312.
CrossRef Google scholar
Wetzler N, Lay T, Brodsky E E . Systematic Deficiency of Aftershocks in Areas of High Coseismic Slip for Large Subduction Zone Earthquakes. Science Advances, 2018, 4(2): eaao3225.
CrossRef Google scholar
Wood H O. The Elastic-Rebound Theory of Earthquakes. Bulletin of the Seismological Society of America, 1912, 2(1): 98-100.
CrossRef Google scholar
Wu J W, Miao C Y, Zheng H Y . Meteorological and Hydrological Drought on the Loess Plateau, China: Evolutionary Characteristics, Impact, and Propagation. Journal of Geophysical Research (Atmospheres), 2018, 123(20): 11,569-11,584
Xiao G Q, Guo Z T, Dupont-Nivet G . Evidence for Northeastern Tibetan Plateau Uplift between 25 and 20 Ma in the Sedimentary Archive of the Xining Basin, NorthWestern China. Earth and Planetary Science Letters, 2012, 317 185-195.
CrossRef Google scholar
Xu C. Preparation of Earthquake-Triggered Landslide Inventory Maps Using Remote Sensing and GIS Technologies: Principles and Case Studies. Geoscience Frontiers, 2015, 6(6): 825-836.
CrossRef Google scholar
Xu C, Xu X W, Yu G H. Landslides Triggered by Slipping-Fault-Generated Earthquake on a Plateau: An Example of the 14 April 2010, Ms 7.1, Yushu, China Earthquake. Landslides, 2013, 10(4): 421-431.
CrossRef Google scholar
Xu C, Xu X W, Zheng W Z . Landslides Triggered by the April 20, 2013 Lushan, Sichuan Province Ms 7.0 Strong Earthquake of China. Seismology and Geology, 2013, 35(3): 641-660 (in Chinese with English Abstract)
Xu L W, Mohanna S, Meng L S . The Overall-Subshear and Multi-Segment Rupture of the 2023 Mw7.8 Kahramanmaraş, Turkey Earthquake in Millennia Supercycle. Communications Earth & Environment, 2023, 4 379.
CrossRef Google scholar
Xu L W, Zhang Y J, Ji C . Understanding the Rupture Kinematics and Slip Model of the 2021 Mw 7.4 Maduo Earthquake: A Bilateral Event on Bifurcating Faults. Journal of Geophysical Research: Solid Earth, 2023, 128(4): essoar.10511643
Xu S Q, Fukuyama E, Ben-Zion Y . Dynamic Rupture Activation of Backthrust Fault Branching. Tectonophysics, 2015, 644 161-183.
CrossRef Google scholar
Xu Y K, George D L, Kim J . Landslide Monitoring and Runout Hazard Assessment by Integrating Multi-Source Remote Sensing and Numerical Models: An Application to the Gold Basin Landslide Complex, Northern Washington. Landslides, 2021, 18(3): 1131-1141.
CrossRef Google scholar
Yabuki T, Matsu’ura M. Geodetic Data Inversion Using a Bayesian Information Criterion for Spatial Distribution of Fault Slip. Geophysical Journal International, 1992, 109(2): 363-375.
CrossRef Google scholar
Yang Z G, Chen Y T, Zhang X M . S-Wave Velocity Structure and Radial Anisotropy in Eastern and North-Eastern Margins of Tibetan Plateau. Chinese Journal of Geophysics, 2019, 62(12): 4554-4570 (in Chinese with English Abstract)
Yu C, Li Z H, Penna N T . Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. Journal of Geophysical Research (Solid Earth), 2018, 123(10): 9202-9222.
CrossRef Google scholar
Yu C, Li Z H, Song C. Geodetic Constraints on Recent Subduction Earthquakes and Future Seismic Hazards in the Southwestern Coast of Mexico. Geophysical Research Letters, 2021, 48(13): e2021GL094192.
CrossRef Google scholar
Yuan D Y Tectonic Deformation Features and Spatial-Temporal Evolution in the Northeastern Margin of the Qinghai-Tibetan Plateau since the Late Cenozoic Time: [Dissertation], 2003 Beijing China Earthquake Administration Institute of Geology (in Chinese with English Abstract)
Yuan D Y, Ge W P, Chen Z W . The Growth of Northeastern Tibet and Its Relevance to Large-Scale Continental Geodynamics: A Review of Recent Studies. Tectonics, 2013, 32(5): 1358-1370.
CrossRef Google scholar
Yuan D, Zhang P, Lei Z S . Preliminary Study on New Activity Characteristics of Lajishan Fault Zone in Qinghai. China Earthquake, 2005, 21(01): 93-102 (in Chinese with English Abstract)
Zhang B, He W G, Fang L H . Surveys on Surface Rupture Phenomena of Gansu Kangle M6(3/4) Earthquake in 1936. Journal of Seismological Research, 2015, 38(2): 262-271 333 (in Chinese with English Abstract)
Zhang H, Ge Z. Tracking the Rupture of the 2008 Wenchuan Earthquake by Using the Relative Back-Projection Method. Bulletin of the Seismological Society of America, 2010, 100(5B): 2551-2560.
CrossRef Google scholar
Zhang Y F, Shan X J, Gong W Y . The Ambiguous Fault Geometry Derived from InSAR Measurements of Buried Thrust Earthquakes: A Synthetic Data Based Study. Geophysical Journal International, 2021, 225(3): 1799-1811.
CrossRef Google scholar
Zhang Y Y, An Y R, Long F . Short-Term Foreshock and Aftershock Patterns of the 2021 Ms6.4 Yangbi Earthquake Sequence. Seismological Research Letters, 2022, 93(1): 21-32.
CrossRef Google scholar
Zhang Y, Zhang D L, Li X J . Fault Structural Control on Earthquake Strong Ground Motions: The 2008 Wenchuan Earthquake as an Example. Pure and Applied Geophysics, 2018, 175(2): 597-609.
CrossRef Google scholar
Zhang Z J, Bai Z M, Klemperer S L . Crustal Structure across Northeastern Tibet from Wide-Angle Seismic Profiling: Constraints on the Caledonian Qilian Orogeny and Its Reactivation. Tectonophysics, 2013, 606 140-159.
CrossRef Google scholar
Zhang Z, Zhang P, Wang Q. The Structure and Seismogenic Mechanism of Longmenshan High Dip-Angle Reverse Fault. Chinese Journal of Geophysics, 2010, 53(9): 2068-2082 (in Chinese with English Abstract)
Zhou H F, Ye F, Fu W X . Dynamic Effect of Landslides Triggered by Earthquake: A Case Study in Moxi Town of Luding County, China. Journal of Earth Science, 2024, 35(1): 221-234.
CrossRef Google scholar
Zhou Y S, He C R. The Rheological Structures of Crust and Mechanics of High-Angle Reverse Fault Slip for Wenchuan Ms8.0 Earthquake. Chinese Journal of Geophysics, 2009, 52(2): 474-484 (in Chinese with English Abstract)

25

Accesses

0

Citations

Detail

Sections
Recommended

/