Revised Understanding of Permafrost Shape: Inclusion of the Transition Zone and Its Climatic and Environmental Significances

Dongliang Luo, Zeyong Gao, Fangfang Chen, Luyang Wang, Jia Liu, Shizhen Li, Qi Shen, Yajuan Zao

Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (1) : 339-346.

Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (1) : 339-346. DOI: 10.1007/s12583-024-0111-3
Editorial

Revised Understanding of Permafrost Shape: Inclusion of the Transition Zone and Its Climatic and Environmental Significances

Author information +
History +

Abstract

Incorporating the transition zone into permafrost research marks a paradigm shift in better understanding the dynamics of Earth’s cryosphere. Recognizing the complex role of the transition zone in thermal regulation, infrastructure stability, and landscape evolution is crucial for developing effective climate resilience strategies and fostering sustainable development in permafrost regions. This expanded perspective is imperative for mitigating environmental impacts and preserving the unique ecosystems of polar and high-altitude eco-environment.

Cite this article

Download citation ▾
Dongliang Luo, Zeyong Gao, Fangfang Chen, Luyang Wang, Jia Liu, Shizhen Li, Qi Shen, Yajuan Zao. Revised Understanding of Permafrost Shape: Inclusion of the Transition Zone and Its Climatic and Environmental Significances. Journal of Earth Science, 2025, 36(1): 339‒346 https://doi.org/10.1007/s12583-024-0111-3

References

[]
Biskaborn B K, Smith S L, Noetzli J . Permafrost Is Warming at a Global Scale. Nature Communications, 2019, 10(1): 264.
CrossRef Google scholar
[]
Bockheim J G, Hinkel K M. Characteristics and Significance of the Transition Zone in Drained Thaw-Lake Basins of the Arctic Coastal Plain, Alaska. Arctic, 2010, 58(4): 406-417.
CrossRef Google scholar
[]
Bonnaventure P P, Lamoureux S F. The Active Layer: A Conceptual Review of Monitoring, Modelling Techniques and Changes in a Warming Climate. Progress in Physical Geography: Earth and Environment, 2013, 37(3): 352-376.
CrossRef Google scholar
[]
Burn C R. The Development of Near-Surface Ground Ice during the Holocene at Sites near Mayo, Yukon Territory, Canada. Journal of Quaternary Science, 1988, 3(1): 31-38.
CrossRef Google scholar
[]
Burn C R. The Active Layer: Two Contrasting Definitions. Permafrost and Periglacial Processes, 1998, 9(4): 411-416.
CrossRef Google scholar
[]
Cable J M, Ogle K, Bolton W R . Permafrost Thaw Affects Boreal Deciduous Plant Transpiration through Increased Soil Water, Deeper Thaw, and Warmer Soils. Ecohydrology, 2014, 7(3): 982-997.
CrossRef Google scholar
[]
Cai L, Lee H N, Aas K S . Projecting Circum-Arctic Excess-Ground-Ice Melt with a Sub-Grid Representation in the Community Land Model. The Cryosphere, 2020, 14(12): 4611-4626.
CrossRef Google scholar
[]
Chen Y P, Lara M J, Jones B M . Thermokarst Acceleration in Arctic Tundra Driven by Climate Change and Fire Disturbance. One Earth, 2021, 4(12): 1718-1729.
CrossRef Google scholar
[]
Cheng G D. The Mechanism of Repeated-Segregation for the Formation of Thick Layered Ground Ice. Cold Regions Science and Technology, 1983, 8(1): 57-66.
CrossRef Google scholar
[]
Dobiński W. Permafrost. Earth-Science Reviews, 2011, 108(3/4): 158-169.
CrossRef Google scholar
[]
Dobiński W. Permafrost Active Layer. Earth-Science Reviews, 2020, 208 103301.
CrossRef Google scholar
[]
Farquharson L M, Romanovsky V E, Kholodov A . Sub-Aerial Talik Formation Observed across the Discontinuous Permafrost Zone of Alaska. Nature Geoscience, 2022, 15 475-481.
CrossRef Google scholar
[]
Fortier D, Allard M, Shur Y. Observation of Rapid Drainage System Development by Thermal Erosion of Ice Wedges on Bylot Island, Canadian Arctic Archipelago. Permafrost and Periglacial Processes, 2007, 18(3): 229-243.
CrossRef Google scholar
[]
French H, Shur Y. The Principles of Cryostratigraphy. Earth-Science Reviews, 2010, 101(3/4): 190-206.
CrossRef Google scholar
[]
Genet H, McGuire A D, Barrett K . Modeling the Effects of Fire Severity and Climate Warming on Active Layer Thickness and Soil Carbon Storage of Black Spruce Forests across the Landscape in Interior Alaska. Environmental Research Letters, 2013, 8(4): 045016.
CrossRef Google scholar
[]
Harris S A, Anatoli B, Cheng G D Geocryology: Characteristics and Use of Frozen Ground and Permafrost Landforms, 2018 London CRC Press, Taylor & Francis 766
[]
Heijmans M M P D, Magnússon R Í, Lara M J . Tundra Vegetation Change and Impacts on Permafrost. Nature Reviews Earth & Environment, 2022, 3 68-84.
CrossRef Google scholar
[]
Hinkel K M, Nelson F E. Spatial and Temporal Patterns of Active Layer Thickness at Circumpolar Active Layer Monitoring (CALM) Sites in Northern Alaska, 1995–2000. Journal of Geophysical Research: Atmospheres, 2003, 108(D2): 8168.
CrossRef Google scholar
[]
Jasinski B L, Hewitt R E, Mauritz M . Plant Foliar Nutrient Response to Active Layer and Water Table Depth in Warming Permafrost Soils. Journal of Ecology, 2022, 110(5): 1201-1216.
CrossRef Google scholar
[]
Jin H J, He R X, Cheng G D . Changes in Frozen Ground in the Source Area of the Yellow River on the Qinghai–Tibet Plateau, China, and Their Eco-Environmental Impacts. Environmental Research Letters, 2009, 4(4): 045206.
CrossRef Google scholar
[]
Jin H J, Li S X, Cheng G D . Permafrost and Climatic Change in China. Global and Planetary Change, 2000, 26(4): 387-404.
CrossRef Google scholar
[]
Jin H J, Yu Q H, Wang S L . Changes in Permafrost Environments along the Qinghai-Tibet Engineering Corridor Induced by Anthropogenic Activities and Climate Warming. Cold Regions Science and Technology, 2008, 53(3): 317-333.
CrossRef Google scholar
[]
Jin X Y, Jin H J, Iwahana G . Impacts of Climate-Induced Permafrost Degradation on Vegetation: A Review. Advances in Climate Change Research, 2021, 12(1): 29-47.
CrossRef Google scholar
[]
Jorgenson M T, Kanevskiy M, Shur Y . Role of Ground Ice Dynamics and Ecological Feedbacks in Recent Ice Wedge Degradation and Stabilization. Journal of Geophysical Research: Earth Surface, 2015, 120(11): 2280-2297.
CrossRef Google scholar
[]
Jorgenson M T, Romanovsky V, Harden J . Resilience and Vulnerability of Permafrost to Climate Change. Canadian Journal of Forest Research, 2010, 40(7): 1219-1236.
CrossRef Google scholar
[]
Kanevskiy M, Jorgenson T, Shur Y . Cryostratigraphy and Permafrost Evolution in the Lacustrine Lowlands of West-Central Alaska. Permafrost and Periglacial Processes, 2014, 25(1): 14-34.
CrossRef Google scholar
[]
Kanevskiy M, Shur Y, Jorgenson M T . Ground Ice in the Upper Permafrost of the Beaufort Sea Coast of Alaska. Cold Regions Science and Technology, 2013, 85 56-70.
CrossRef Google scholar
[]
Lee H N, Swenson S C, Slater A G . Effects of Excess Ground Ice on Projections of Permafrost in a Warming Climate. Environmental Research Letters, 2014, 9(12): 124006.
CrossRef Google scholar
[]
Li T, Chen Y Z, Han L J . Shortened Duration and Reduced Area of Frozen Soil in the Northern Hemisphere. The Innovation, 2021, 2(3): 100146.
CrossRef Google scholar
[]
Luo D L, Jin H J, Wu Q B . Active Layer Thickness (ALT) in Permafrost Regions under Natural/Undisturbed State: A Review. Journal of Glaciology and Geocryology, 2023, 45(2): 558-574 (in Chinese of English Abstract)
[]
Luo D L, Liu J, Chen F F . Research Progress and Prospect of Transition Zone in Permafrost. Earth Science, 2024, 49(11): 4063-4081 (in Chinese of English Abstract)
[]
Luo D L, Wu Q B, Jin H J . Recent Changes in the Active Layer Thickness across the Northern Hemisphere. Environmental Earth Sciences, 2016, 75(7): 555.
CrossRef Google scholar
[]
Mackay J R. The World of Underground Ice. Annals of the Association of American Geographers, 1972, 62(1): 1-22.
CrossRef Google scholar
[]
Monteath A J, Kuzmina S, Mahony M . Relict Permafrost Preserves Megafauna, Insects, Pollen, Soils and Pore-Ice Isotopes of the Mammoth Steppe and Its Collapse in Central Yukon. Quaternary Science Reviews, 2023, 299 107878.
CrossRef Google scholar
[]
Muller S W. Permafrost or Permanently Frozen Ground and Related Engineering Problems. Strategic Engineering Study, 1943
[]
Murton J B Haritashya J S. Ground Ice. Treatise on Geomorphology, 2022 San Diego Academic Press 428-457.
CrossRef Google scholar
[]
Murton J B, French H M. Cryostructures in Permafrost, Tuktoyaktuk Coastlands, Western Arctic Canada. Canadian Journal of Earth Sciences, 1994, 31(4): 737-747.
CrossRef Google scholar
[]
Murton J B, Waller R I, Hart J K . Stratigraphy and Glaciotectonic Structures of Permafrost Deformed beneath the Northwest Margin of the Laurentide Ice Sheet, Tuktoyaktuk Coastlands, Canada. Journal of Glaciology, 2004, 50(170): 399-412.
CrossRef Google scholar
[]
Nelson F E, Shiklomanov N I, Mueller G R . Estimating Active-Layer Thickness over a Large Region: Kuparuk River Basin, Alaska, U. S. A. Arctic and Alpine Research, 1997, 29(4): 367.
CrossRef Google scholar
[]
Nelson F E, Shiklomanov N I, Nyland K E. Cool, CALM, Collected: The Circumpolar Active Layer Monitoring Program and Network. Polar Geography, 2021, 44(3): 155-166.
CrossRef Google scholar
[]
Osterkamp T E, Romanovsky V E. Evidence for Warming and Thawing of Discontinuous Permafrost in Alaska. Permafrost and Periglacial Processes, 1999, 10(1): 17-37.
CrossRef Google scholar
[]
Paquette M, Rudy A C A, Fortier D . Multi-Scale Site Evaluation of a Relict Active Layer Detachment in a High Arctic Landscape. Geomorphology, 2020, 359 107159.
CrossRef Google scholar
[]
Peng X Q, Zhang T J, Frauenfeld O W . Spatiotemporal Changes in Active Layer Thickness under Contemporary and Projected Climate in the Northern Hemisphere. Journal of Climate, 2018, 31(1): 251-266.
CrossRef Google scholar
[]
Romanovsky V E, Smith S L, Christiansen H H. Permafrost Thermal State in the Polar Northern Hemisphere during the International Polar Year 2007–2009: A Synthesis. Permafrost and Periglacial Processes, 2010, 21(2): 106-116.
CrossRef Google scholar
[]
Schuur E A G, Abbott B W, Commane R . Permafrost and Climate Change: Carbon Cycle Feedbacks from the Warming Arctic. Annual Review of Environment and Resources, 2022, 47(1): 343-371.
CrossRef Google scholar
[]
Schuur E A G, Bockheim J, Canadell J G . Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle. BioScience, 2008, 58(8): 701-714.
CrossRef Google scholar
[]
Schuur E A G, Mack M C. Ecological Response to Permafrost Thaw and Consequences for Local and Global Ecosystem Services. Annual Review of Ecology, Evolution, and Systematics, 2018, 49 279-301.
CrossRef Google scholar
[]
Schuur E A G, McGuire A D, Schädel C . Climate Change and the Permafrost Carbon Feedback. Nature, 2015, 520(7546): 171-179.
CrossRef Google scholar
[]
Shur Y L, Jorgenson M T. Patterns of Permafrost Formation and Degradation in Relation to Climate and Ecosystems. Permafrost and Periglacial Processes, 2007, 18(1): 7-19.
CrossRef Google scholar
[]
Shur Y Senneset K. The upper Horizon of Permafrost Soils. Proceedings of Fifth International Conference on Permafrost, 1988 Trondheim, Norway Tapir 867-871
[]
Shur Y, Hinkel K M, Nelson F E. The Transient Layer: Implications for Geocryology and Climate-Change Science. Permafrost and Periglacial Processes, 2005, 16(1): 5-17.
CrossRef Google scholar
[]
Smith S L, O’Neill H B, Isaksen K . The Changing Thermal State of Permafrost. Nature Reviews Earth & Environment, 2022, 3(1): 10-23.
CrossRef Google scholar
[]
Solomatin V I, Xu X Z. Water Migration and Ice Segregation in the Transition Zone between Thawed and Frozen Soil. Permafrost and Periglacial Processes, 1994, 5(3): 185-190.
CrossRef Google scholar
[]
Sugimoto A, Yanagisawa N, Naito D . Importance of Permafrost as a Source of Water for Plants in East Siberian Taiga. Ecological Research, 2002, 17(4): 493-503.
CrossRef Google scholar
[]
Sun J, Wang Y X, Lee T M . Nature-Based Solutions Can Help Restore Degraded Grasslands and Increase Carbon Sequestration in the Tibetan Plateau. Communications Earth & Environment, 2024, 5 154.
CrossRef Google scholar
[]
Wang G Q, Peng Y F, Chen L Y . Enhanced Response of Soil Respiration to Experimental Warming Upon Thermokarst Formation. Nature Geoscience, 2024, 17(6): 532-538.
CrossRef Google scholar
[]
Wang W H, Wu T H, Chen Y N . Spatial Variations and Controlling Factors of Ground Ice Isotopes in Permafrost Areas of the Central Qinghai-Tibet Plateau. Science of the Total Environment, 2019, 688 542-554.
CrossRef Google scholar
[]
Wu, Q. B., Ma, W., Lai, Y. M., et al., 2024. Permafrost Degradation Threatening the Qinghai-Xizang Railway. Engineering, https://doi.org/10.1016/j.eng.2024.01.023
[]
Wu Q B, Zhang T J. Changes in Active Layer Thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. Journal of Geophysical Research: Atmospheres, 2010, 115(D9): e2009jd012974.
CrossRef Google scholar
[]
Xu X M, Wu Q B. Active Layer Thickness Variation on the Qinghai-Tibetan Plateau: Historical and Projected Trends. Journal of Geophysical Research: Atmospheres, 2021, 126(23): e2021jd034841.
CrossRef Google scholar
[]
Yang Z P, Gao J X, Zhao L . Linking Thaw Depth with Soil Moisture and Plant Community Composition: Effects of Permafrost Degradation on Alpine Ecosystems on the Qinghai-Tibet Plateau. Plant and Soil, 2013, 367(1): 687-700.
CrossRef Google scholar
[]
Zhang, L., Lu, X. M., Zhu, H. Z., et al., 2023. A Rapid Transition from Spruce-Fir to Pine-Broadleaf Forests in Response to Disturbances and Climate Warming on the Southeastern Qinghai-Tibet Plateau. Plant Diversity, https://doi.org/10.1016/j.pld.2023.03.002

Accesses

Citations

Detail

Sections
Recommended

/