Atmospheric CO2 Removal Efficiency through Enhanced Silicate Weathering in Croplands: A Review with Emphasis on the Contribution of Fungi
Zi-Bo Li, Gaojun Li, Jonathan M. Adams, Dong-Xing Guan, Liang Zhao, Rongjun Bian, Qing Hu, Xiancai Lu, Junfeng Ji, Jun Chen
Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (1) : 197-211.
Atmospheric CO2 Removal Efficiency through Enhanced Silicate Weathering in Croplands: A Review with Emphasis on the Contribution of Fungi
Enhanced silicate weathering (ESW) is a geoengineering method aimed at accelerating carbon dioxide (CO2) removal (CDR) from atmosphere by increasing the weathering flux of silicate rocks and minerals. It has emerged as a promising strategy for CDR. Theoretical studies underscore ESW’s substantial potential for CDR and its diverse benefits for crops when applied to croplands. However, the well-known significant discrepancies in silicate weathering rates between laboratory and field conditions introduce uncertainty in CDR through ESW. By compiling data from recent literature, we calculated and compared CDR efficiency (t CO2 tsilicate −1 ha−1 y−1) observed in mesocosm experiments and field trials. The findings indicate that CDR efficiencies in field trials are comparable to or exceeding that observed in mesocosm experiments by 1–3 orders of magnitude, particularly evident with wollastonite application. The hierarchy of CDR efficiency among silicates suitable for ESW is ranked as follows: olivine ⩾ wollastonite > basalt > albite ⩾ anorthite. We suggest the potential role of biota, especially fungi, in contributing to higher CDR efficiencies observed in field trials compared to mesocosm experiments. We further emphasize introducing fungi known for their effectiveness in silicate weathering could potentially enhance CDR efficiency through ESW in croplands. But before implementing fungal-facilitated ESW, three key questions need addressing: (i) How does the community of introduced fungi evolve over time? (ii) What is the long-term trajectory of CDR efficiency following fungal introduction? and (iii) Could fungal introduction lead to organic matter oxidation, resulting in elevated CO2 emissions? These investigations are crucial for optimizing the efficiency and sustainability of fungal-facilitated ESW strategy.
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
Beerling, D. J., Kantzas, E. P., Martin, M. V., et al., 2023. Transforming U. S. Agriculture with Crushed Rock for CO2 Sequestration and Increased Production. arXiv Preprint: 2308.04302. https://arxiv.org/abs/2308.04302v1
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
IPCC
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
Urey, H. C., 1952. The Origin and Development of the Earth and Other Terrestrial Planets: A Correction. 2(5–6): 263–268. https://doi.org/10.1016/0016-7037(52)90010-0
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
/
〈 |
|
〉 |