Late Holocene Hydroclimatic Variations at Lake Hurleg, Northeastern Tibet Plateau

Aiying Cheng, Junqing Yu, Yun Li, Haicheng Wei, Chunliang Gao, Lisha Zhang

Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (1) : 161-172.

Journal of Earth Science All Journals
Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (1) : 161-172. DOI: 10.1007/s12583-024-0077-1
Hydrogeology and Environmental Geology

Late Holocene Hydroclimatic Variations at Lake Hurleg, Northeastern Tibet Plateau

Author information +
History +

Abstract

High-resolution, continuous Late Holocene lacustrine records are scarce in the Qaidam Basin, but is of especially important for our understanding the future climate variability in the western China. Here, we use grain size, element content and XRD-identified data from the Lake Hurleg in the eastern Qaidam Basin to present the Late Holocene climate variability, which have been temporally constrained using 210Pb-, 137Cs- and AMS 14C dating. Our records demonstrate that decreased precipitation climate occurred at ∼800–1000 yr and ∼1300–1800 yr intervals, and increased precipitation occurred at ∼354–800 yr, ∼1000–1300 yr and ∼1800 yr to the present. The results show that the Qaidam Basin has undergone a process of warming and humidification since the Industrial Revolution, which is consistent with the meteorological records. The climate in the northeastern Qaidam Basin is dominated by the Asian Monsoon.

Cite this article

Download citation ▾
Aiying Cheng, Junqing Yu, Yun Li, Haicheng Wei, Chunliang Gao, Lisha Zhang. Late Holocene Hydroclimatic Variations at Lake Hurleg, Northeastern Tibet Plateau. Journal of Earth Science, 2025, 36(1): 161‒172 https://doi.org/10.1007/s12583-024-0077-1
This is a preview of subscription content, contact us for subscripton.

References

Appleby P G, Nolan P J, Gifford D W . 210Pb Dating by Low Background Gamma Counting. Hydrobiologia, 1986, 143(1): 21-27.
CrossRef Google scholar
Appleby P G, Oldfield F. The Calculation of Lead-210 Dates Assuming a Constant Rate of Supply of Unsupported 210Pb to the Sediment. Catena, 1978, 5(1): 1-8.
CrossRef Google scholar
Arnaud F, Révillon S, Debret M . Lake Bourget Regional Erosion Patterns Reconstruction Reveals Holocene NW European Alps Soil Evolution and Paleohydrology. Quaternary Science Reviews, 2012, 51 81-92.
CrossRef Google scholar
Arz H W, Lamy F, Pätzold J. A Pronounced Dry Event Recorded around 4.2 Ka in Brine Sediments from the Northern Red Sea. Quaternary Research, 2006, 66(3): 432-441.
CrossRef Google scholar
Aufgebauer A, Panagiotopoulos K, Wagner B . Climate and Environmental Change in the Balkans over the last 17 Ka Recorded in Sediments from Lake Prespa (Albania/F.Y.R. of Macedonia/Greece). Quaternary International, 2012, 274 122-135.
CrossRef Google scholar
Balascio N L, Zhang Z H, Bradley R S . A Multi-Proxy Approach to Assessing Isolation Basin Stratigraphy from the Lofoten Islands, Norway. Quaternary Research, 2011, 75(1): 288-300.
CrossRef Google scholar
Bhattacharyya A, Sandeep K, Misra S . Vegetational and Climatic Variations during the Past 3100 Years in Southern India: Evidence from Pollen, Magnetic Susceptibility and Particle Size Data. Environmental Earth Sciences, 2015, 74(4): 3559-3572.
CrossRef Google scholar
Binford M W. Calculation and Uncertainty Analysis of 210Pb Dates for PIRLA Project Lake Sediment Cores. Journal of Paleolimnology, 1990, 3(3): 253-267.
CrossRef Google scholar
Bøe A G, Dahl S O, Lie Ø . Holocene River Floods in the Upper Glomma Catchment, Southern Norway: A High-Resolution Multiproxy Record from Lacustrine Sediments. The Holocene, 2006, 16(3): 445-455.
CrossRef Google scholar
Boës X, Rydberg J, Martinez-Cortizas A . Evaluation of Conservative Lithogenic Elements (Ti, Zr, Al, and Rb) to Study Anthropogenic Element Enrichments in Lake Sediments. Journal of Paleolimnology, 2011, 46(1): 75-87.
CrossRef Google scholar
Chen F H, Chen J, Huang W. Weakened East Asian Summer Monsoon Triggers Increased Precipitation in Northwest China. Science China Earth Sciences, 2021, 64(5): 835-837.
CrossRef Google scholar
Chen J A, Wan G J, Zhang D D . Environmental Records of Lacustrine Sediments in Different Time Scales: Sediment Grain Size as an Example. Science in China Series D: Earth Sciences, 2004, 47(10): 954-960.
CrossRef Google scholar
Chen J H, Chen F H, Feng S . Hydroclimatic Changes in China and Surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial Patterns and Possible Mechanisms. Quaternary Science Reviews, 2015, 107 98-111.
CrossRef Google scholar
Christensen J H Stocker T F, Qin D, Plattner G K. Climate Phenomena and Their Relevance for Future Regional Climate Change. Climate Change 2013: The Physical Science Basis, 2014 Cambridge Cambridge University Press
Cui A N, Ma C M, Zhao L . Pollen Records of the Little Ice Age Humidity Flip in the Middle Yangtze River Catchment. Quaternary Science Reviews, 2018, 193 43-53.
CrossRef Google scholar
Duan S Q. Lake Evolution in the Qaidam Basin during 1976–2015 and Their Changes in Response to Climate and Anthropogenic Factors. Journal of Lake Science, 2018, 30(1): 256-265. in Chinese with English Abstract)
CrossRef Google scholar
Fouinat L, Sabatier P, Poulenard J . One Thousand Seven Hundred Years of Interaction between Glacial Activity and Flood Frequency in Proglacial Lake Muzelle (Western French Alps). Quaternary Research, 2017, 87(3): 407-422.
CrossRef Google scholar
Gao C L, Yu J Q, Min X Y . The Sedimentary Evolution of Da Qaidam Salt Lake in Qaidam Basin, Northern Tibetan Plateau: Implications for Hydro-Climate Change and the Formation of Pinnoite Deposit. Environmental Earth Sciences, 2019, 78(15): 463.
CrossRef Google scholar
Gilli A, Anselmetti F S, Ariztegui D . A 600-Year Sedimentary Record of Flood Events from Two Sub-Alpine Lakes (Schwendiseen, Northeastern Switzerland). Lake Systems from the Ice Age to Industrial Time, 2003 Basel Birkhäuser Basel 49-58.
CrossRef Google scholar
Griffiths M L, Kimbrough A K, Gagan M K . Western Pacific Hydroclimate Linked to Global Climate Variability over the Past Two Millennia. Nature Communications, 2016, 7 11719.
CrossRef Google scholar
Haberzettl T, Fey M, Lücke A . Climatically Induced Lake Level Changes during the last Two Millennia as Reflected in Sediments of Laguna Potrok Aike, Southern Patagonia (Santa Cruz, Argentina). Journal of Paleolimnology, 2005, 33(3): 283-302.
CrossRef Google scholar
Han L, Li Y, Liu X Q . Paleoclimatic Reconstruction and the Response of Carbonate Minerals during the Past 8000 Years over the Northeast Tibetan Plateau. Quaternary International, 2020, 553 94-103.
CrossRef Google scholar
Haug G H, Hughen K A, Sigman D M . Southward Migration of the Intertropical Convergence Zone through the Holocene. Science, 2001, 293(5533): 1304-1308.
CrossRef Google scholar
Henderson A C G, Holmes J A. Palaeolimnological Evidence for Environmental Change over the Past Millennium from Lake Qinghai Sediments: A Review and Future Research Prospective. Quaternary International, 2009, 194(1/2): 134-147.
CrossRef Google scholar
Ji J F, Shen J, Balsam W . Asian Monsoon Oscillations in the Northeastern Qinghai-Tibet Plateau since the Late Glacial as Interpreted from Visible Reflectance of Qinghai Lake Sediments. Earth and Planetary Science Letters, 2005, 233(1/2): 61-70.
CrossRef Google scholar
Ji K J, Zhu E L, Chu G Q . A Record of Late Holocene Precipitation on the Central Tibetan Plateau Inferred from Varved Lake Sediments. Journal of Paleolimnology, 2021, 66(4): 439-452.
CrossRef Google scholar
Jones P D, Osborn T J, Briffa K R. The Evolution of Climate over the last Millennium. Science, 2001, 292(5517): 662-667.
CrossRef Google scholar
Lan J H, Cheng J, Chawchai S . Fundamental Shift from Summer to Winter of Holocene Rainfall Regime in the Tropics. Geophysical Research Letters, 2023, 50(13): e2023GL102909.
CrossRef Google scholar
Lan J H, Wang T L, Chawchai S . Time Marker of 137Cs Fallout Maximum in Lake Sediments of Northwest China. Quaternary Science Reviews, 2020, 241 106413.
CrossRef Google scholar
Lan J H, Xu H, Sheng E G . Climate Changes Reconstructed from a Glacial Lake in High Central Asia over the Past Two Millennia. Quaternary International, 2018, 487 43-53.
CrossRef Google scholar
Li X M, Fan B W, Hou J Z . Characteristics of Compositions of Organic Matter δ13C in Lake Sediments from Dagze Co in Tibetan Plateau and Its Paleoclimatic and Paleoenvironmental Significance. Earth Science, 2022, 47(6): 2275-2286 (in Chinese with English Abstract)
Ling Y, Dai X Q, Zheng M P . High-Resolution Geochemical Record for the Last 1100 Yr from Lake Toson, Northeastern Tibetan Plateau, and Its Climatic Implications. Quaternary International, 2018, 487 61-70.
CrossRef Google scholar
Liu X Q, Dong H L, Rech J A . Evolution of Chaka Salt Lake in NW China in Response to Climatic Change during the Latest Pleistocene–Holocene. Quaternary Science Reviews, 2008, 27(7/8): 867-879
Liu X X, Wen Z H, Shu L C . Analysis of Surface Area Changes of Keluke and Tuosu Lakes over Past 40 Years and Influencing Factors. Water Resources Protection, 2014, 30(1): 28-33 63 (in Chinese with English Abstract)
Liu Z H, Henderson A C G, Huang Y S. Alkenone-Based Reconstruction of Late-Holocene Surface Temperature and Salinity Changes in Lake Qinghai, China. Geophysical Research Letters, 2006, 33(9): 370-386.
CrossRef Google scholar
Lu H Y, An Z S. Pretreatment Methods in Loess-Palaeosol Granulometry. Chinese Science Bulletin, 1997, 42 237-240
Metcalfe S E, Jones M D, Davies S J . Climate Variability over the Last Two Millennia in the North American Monsoon Region, Recorded in Laminated Lake Sediments from Laguna de Juanacatlán, Mexico. The Holocene, 2010, 20(8): 1195-1206.
CrossRef Google scholar
Moberg A, Sonechkin D M, Holmgren K . Highly Variable Northern Hemisphere Temperatures Reconstructed from Low- and High-Resolution Proxy Data. Nature, 2005, 433(7026): 613-617.
CrossRef Google scholar
Moreno A, Valero-Garcés B L, González-Sampériz P . Flood Response to Rainfall Variability during the Last 2000 Years Inferred from the Taravilla Lake Record (Central Iberian Range, Spain). Journal of Paleolimnology, 2008, 40(3): 943-961.
CrossRef Google scholar
Muller J, Kylander M, Martinez-Cortizas A . The Use of Principle Component Analyses in Characterising Trace and Major Elemental Distribution in a 55kyr Peat Deposit in Tropical Australia: Implications to Paleoclimate. Geochimica et Cosmochimica Acta, 2008, 72(2): 449-463.
CrossRef Google scholar
Muscheler R, Joos F, Beer J . Solar Activity during the last 1000yr Inferred from Radionuclide Records. Quaternary Science Reviews, 2007, 26(1/2): 82-97.
CrossRef Google scholar
PAGES 2k Consortium. Continental-Scale Temperature Variability during the Past Two Millennia. Nature Geoscience, 2013, 6 339-346.
CrossRef Google scholar
PAGES 2k Consortium. Consistent Multi-Decadal Variability in Global Temperature Reconstructions and Simulations over the Common Era. Nature Geoscience, 2019, 12(8): 643-649.
CrossRef Google scholar
Rapuc W, Jacq K, Develle A L . XRF and Hyperspectral Analyses as an Automatic Way to Detect Flood Events in Sediment Cores. Sedimentary Geology, 2020, 409 105776.
CrossRef Google scholar
Shala S, Helmens K F, Jansson K N . Palaeoenvironmental Record of Glacial Lake Evolution during the Early Holocene at Sokli, NE Finland. Boreas, 2014, 43(2): 362-376.
CrossRef Google scholar
Shao X M, Liang E Y, Huang L . A 1437-Year Precipitation History from Qilian Juniper in the Northeastern Qinghai-Tibetan Plateau. PAGES News, 2005, 13(2): 14-15.
CrossRef Google scholar
Shen J, Liu X Q, Wang S M . Palaeoclimatic Changes in the Qinghai Lake Area during the last 18, 000 Years. Quaternary International, 2005, 136(1): 131-140.
CrossRef Google scholar
Stansell N D, Rodbell D T, Abbott M B . Proglacial Lake Sediment Records of Holocene Climate Change in the Western Cordillera of Peru. Quaternary Science Reviews, 2013, 70 1-14.
CrossRef Google scholar
Støren E N, Dahl S O, Nesje A . Identifying the Sedimentary Imprint of High-Frequency Holocene River Floods in Lake Sediments: Development and Application of a New Method. Quaternary Science Reviews, 2010, 29(23/24): 3021-3033.
CrossRef Google scholar
Thompson L G, Mosley-Thompson E, Davis M E . A 1000 Year Climate Ice-Core Record from the Guliya Ice Cap, China: Its Relationship to Global Climate Variability. Annals of Glaciology, 1995, 21 175-181.
CrossRef Google scholar
Wang X H, Wang L S, Hu S Y . Indian Summer Monsoon Variability over Last 2000 Years Inferred from Sediment Magnetic Characteristics in Lugu Lake, Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 578(3): 110581.
CrossRef Google scholar
Wang Y J, Cheng H Y, Edwards R L . The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science, 2005, 308(5723): 854-857.
CrossRef Google scholar
Wilhelm B, Arnaud F, Enters D . Does Global Warming Favour the Occurrence of Extreme Floods in European Alps? First Evidences from a NW Alps Proglacial Lake Sediment Record. Climatic Change, 2012, 113(3): 563-581.
CrossRef Google scholar
Yan H, Sun L G, Oppo D W . South China Sea Hydrological Changes and Pacific Walker Circulation Variations over the Last Millennium. Nature Communications, 2011, 2 293.
CrossRef Google scholar
Yan H, Wei W, Soon W . Dynamics of the Intertropical Convergence Zone over the Western Pacific during the Little Ice Age. Nature Geoscience, 2015, 8 315-320.
CrossRef Google scholar
Yang B, Qin C, Wang J L . A 3500-Year Tree-Ring Record of Annual Precipitation on the Northeastern Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(8): 2903-2908.
CrossRef Google scholar
Yang G F, Chen Z H, Wu F D . Climate Variability over the Last 2000 Years Inferred from Glycerol Dialkyl Glycerol Tetraethers (GDGTS) in Alkaline Nalin Lake of Inner Mongolia, China. Environmental Earth Sciences, 2016, 75(8): 634.
CrossRef Google scholar
Yu J Q, Kelts K R. Abrupt Changes in Climatic Conditions across the Late-Glacial/Holocene Transition on the N. E. Tibet-Qinghai Plateau: Evidence from Lake Qinghai, China. Journal of Paleolimnology, 2002, 28(2): 195-206.
CrossRef Google scholar
Zhang P Z, Cheng H, Edwards R L . A Test of Climate, Sun, and Culture Relationships from an 1810-Year Chinese Cave Record. Science, 2008, 322(5903): 940-942.
CrossRef Google scholar
Zhao C, Yu Z C, Zhao Y . Holocene Millennial-Scale Climate Variations Documented by Multiple Lake-Level Proxies in Sediment Cores from Hurleg Lake, Northwest China. Journal of Paleolimnology, 2010, 44(4): 995-1008.
CrossRef Google scholar
Zhao Y, Yu Z C, Chen F H . Holocene Vegetation and Climate History at Hurleg Lake in the Qaidam Basin, Northwest China. Review of Palaeobotany and Palynology, 2007, 145(3/4): 275-288.
CrossRef Google scholar
Zhou W J, Liu T B, Wang H . Geological Record of Meltwater Events at Qinghai Lake, China from the Past 40 ka. Quaternary Science Reviews, 2016, 149 279-287.
CrossRef Google scholar

28

Accesses

0

Citations

Detail

Sections
Recommended

/