Integrating Shipborne Images with Multichannel Deep Learning for Landslide Detection
Pengfei Feng, Changdong Li, Shuang Zhang, Jie Meng, Jingjing Long
Integrating Shipborne Images with Multichannel Deep Learning for Landslide Detection
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
He, K. M., Zhang, X. Y., Ren, S. Q., et al., 2016. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27–30, 2016, Las Vegas, NV, USA. IEEE: 770–778. https://doi.org/10.1109/CVPR.2016.90
|
[] |
Huang, G., Liu, Z., Van Der Maaten, L., et al., 2017. Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21–26, 2017, Honolulu, HI, USA. IEEE: 2261–2269. https://doi.org/10.1109/CVPR.2017.243
|
[] |
Iandola, F. N., Han, S., Moskewicz, M. W., et al., 2016. SqueezeNet: AlexNetLevel Accuracy with 50x fewer Parameters and < 0.5 MB Model Size. arXiv: 1602.07360. https://doi.org/10.48550/arXiv.1602.07360
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
|
[] |
Redmon, J., Farhadi, A., 2018. YOLOv3: An Incremental Improvement. arXiv: 1804.02767. https://doi.org/10.48550/arXiv.1804.02767
|
[] |
Selvaraju, R. R., Cogswell, M., Das, A., et al., 2017. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. 2017 IEEE International Conference on Computer Vision (ICCV). October 22–29, 2017, Venice, Italy. IEEE: 618–626. https://doi.org/10.1109/ICCV.2017.74
|
[] |
Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv: 1409.1556. https://doi.org/10.48550/arXiv.1409.1556
|
[] |
Szegedy, C., Liu, W., Jia, Y. Q., et al., 2015. Going Deeper with Convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7–12, 2015, Boston, MA, USA. IEEE: 1–9. https://doi.org/10.1109/CVPR.2015.7298594
|
[] |
Tan, M. X., Le, Q. V., 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv: 1905.11946. https://doi.org/10.48550/arXiv.1905.11946
|
[] |
|
[] |
|
/
〈 | 〉 |