Integrating Shipborne Images with Multichannel Deep Learning for Landslide Detection

Pengfei Feng, Changdong Li, Shuang Zhang, Jie Meng, Jingjing Long

Journal of Earth Science ›› 2024, Vol. 35 ›› Issue (1) : 296-300. DOI: 10.1007/s12583-023-1957-5
Editorials

Integrating Shipborne Images with Multichannel Deep Learning for Landslide Detection

Author information +
History +

Cite this article

Download citation ▾
Pengfei Feng, Changdong Li, Shuang Zhang, Jie Meng, Jingjing Long. Integrating Shipborne Images with Multichannel Deep Learning for Landslide Detection. Journal of Earth Science, 2024, 35(1): 296‒300 https://doi.org/10.1007/s12583-023-1957-5

References

[]
Casagli N, Intrieri E, Tofani V, et al.. Landslide Detection, Monitoring and Prediction with Remote-Sensing Techniques. Nature Reviews Earth & Environment, 2023, 4(1): 51-64,
CrossRef Google scholar
[]
Cui P, Peng J B, Shi P J, et al.. Scientific Challenges of Research on Natural Hazards and Disaster Risk. Geography and Sustainability, 2021, 2(3): 216-223,
CrossRef Google scholar
[]
Dai C, Li W L, Wang D, et al.. Active Landslide Detection Based on Sentinel-1 Data and InSAR Technology in Zhouqu County, Gansu Province, Northwest China. Journal of Earth Science, 2021, 32(5): 1092-1103,
CrossRef Google scholar
[]
Ghorbanzadeh O, Blaschke T, Gholamnia K, et al.. Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote Sensing, 2019, 11(2): 196-216,
CrossRef Google scholar
[]
Guo C, Xu Q, Dong X J, et al.. Geohazard Recognition and Inventory Mapping Using Airborne LiDAR Data in Complex Mountainous Areas. Journal of Earth Science, 2021, 32(5): 1079-1091,
CrossRef Google scholar
[]
Guo J, Xu M, Zhang Q, et al.. Reservoir Regulation for Control of an Ancient Landslide Reactivated by Water Level Fluctuations in Heishui River, China. Journal of Earth Science, 2020, 31(6): 1058-1067,
CrossRef Google scholar
[]
He, K. M., Zhang, X. Y., Ren, S. Q., et al., 2016. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27–30, 2016, Las Vegas, NV, USA. IEEE: 770–778. https://doi.org/10.1109/CVPR.2016.90
[]
Huang, G., Liu, Z., Van Der Maaten, L., et al., 2017. Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21–26, 2017, Honolulu, HI, USA. IEEE: 2261–2269. https://doi.org/10.1109/CVPR.2017.243
[]
Iandola, F. N., Han, S., Moskewicz, M. W., et al., 2016. SqueezeNet: AlexNetLevel Accuracy with 50x fewer Parameters and < 0.5 MB Model Size. arXiv: 1602.07360. https://doi.org/10.48550/arXiv.1602.07360
[]
Ji S P, Yu D W, Shen C Y, et al.. Landslide Detection from an Open Satellite Imagery and Digital Elevation Model Dataset Using Attention Boosted Convolutional Neural Networks. Landslides, 2020, 17(6): 1337-1352,
CrossRef Google scholar
[]
Kawabata D, Bandibas J. Landslide Susceptibility Mapping Using Geological Data, a DEM from ASTER Images and an Artificial Neural Network (ANN). Geomorphology, 2009, 113(1/2): 97-109,
CrossRef Google scholar
[]
Li C D, Criss R E, Fu Z Y, et al.. Evolution Characteristics and Displacement Forecasting Model of Landslides with Stair-Step Sliding Surface along the Xiangxi River, Three Gorges Reservoir Region, China. Engineering Geology, 2021, 283: 105961,
CrossRef Google scholar
[]
Li Y, Wang P, Feng Q L, et al.. Landslide Detection Based on Shipborne Images and Deep Learning Models: A Case Study in the Three Gorges Reservoir Area in China. Landslides, 2023, 20(3): 547-558,
CrossRef Google scholar
[]
Li Z H, Zhang C L, Chen B, et al.. A Technical Framework of Landslide Prevention Based on Multi-Source Remote Sensing and Its Engineering Application. Earth Science, 2022, 47(6): 1901-1916 (in Chinese with English Abstract)
[]
Long J J, Li C D, Liu Y, et al.. A Multi-Feature Fusion Transfer Learning Method for Displacement Prediction of Rainfall Reservoir-Induced Landslide with Step-Like Deformation Characteristics. Engineering Geology, 2022, 297: 106494,
CrossRef Google scholar
[]
Meng J, Li C D, Zhou J Q, et al.. Multiscale Evolution Mechanism of Sandstone under Wet-Dry Cycles of Deionized Water: From Molecular Scale to Macroscopic Scale. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(5): 1171-1185,
CrossRef Google scholar
[]
Redmon, J., Farhadi, A., 2018. YOLOv3: An Incremental Improvement. arXiv: 1804.02767. https://doi.org/10.48550/arXiv.1804.02767
[]
Selvaraju, R. R., Cogswell, M., Das, A., et al., 2017. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. 2017 IEEE International Conference on Computer Vision (ICCV). October 22–29, 2017, Venice, Italy. IEEE: 618–626. https://doi.org/10.1109/ICCV.2017.74
[]
Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv: 1409.1556. https://doi.org/10.48550/arXiv.1409.1556
[]
Szegedy, C., Liu, W., Jia, Y. Q., et al., 2015. Going Deeper with Convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7–12, 2015, Boston, MA, USA. IEEE: 1–9. https://doi.org/10.1109/CVPR.2015.7298594
[]
Tan, M. X., Le, Q. V., 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv: 1905.11946. https://doi.org/10.48550/arXiv.1905.11946
[]
Tang H M, Yong R, Ez Eldin M A M. Stability Analysis of Stratified Rock Slopes with Spatially Variable Strength Parameters: The Case of Qianjiangping Landslide. Bulletin of Engineering Geology and the Environment, 2017, 76(3): 839-853,
CrossRef Google scholar
[]
Yan Y, Guo C, Zhong N, et al.. Deformation Characteristics of Jiaju Ancient Landslide Based on InSAR Monitoring Method, Sichuan, China. Earth Science, 2022, 47(12): 4681-4697 (in Chinese with English Abstract)

Accesses

Citations

Detail

Sections
Recommended

/