Integrating Shipborne Images with Multichannel Deep Learning for Landslide Detection
Pengfei Feng, Changdong Li, Shuang Zhang, Jie Meng, Jingjing Long
Journal of Earth Science ›› 2024, Vol. 35 ›› Issue (1) : 296-300.
Integrating Shipborne Images with Multichannel Deep Learning for Landslide Detection
|
|
|
|
|
|
He, K. M., Zhang, X. Y., Ren, S. Q., et al., 2016. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27–30, 2016, Las Vegas, NV, USA. IEEE: 770–778. https://doi.org/10.1109/CVPR.2016.90
|
Huang, G., Liu, Z., Van Der Maaten, L., et al., 2017. Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21–26, 2017, Honolulu, HI, USA. IEEE: 2261–2269. https://doi.org/10.1109/CVPR.2017.243
|
Iandola, F. N., Han, S., Moskewicz, M. W., et al., 2016. SqueezeNet: AlexNetLevel Accuracy with 50x fewer Parameters and < 0.5 MB Model Size. arXiv: 1602.07360. https://doi.org/10.48550/arXiv.1602.07360
|
|
|
|
|
|
|
|
Redmon, J., Farhadi, A., 2018. YOLOv3: An Incremental Improvement. arXiv: 1804.02767. https://doi.org/10.48550/arXiv.1804.02767
|
Selvaraju, R. R., Cogswell, M., Das, A., et al., 2017. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. 2017 IEEE International Conference on Computer Vision (ICCV). October 22–29, 2017, Venice, Italy. IEEE: 618–626. https://doi.org/10.1109/ICCV.2017.74
|
Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv: 1409.1556. https://doi.org/10.48550/arXiv.1409.1556
|
Szegedy, C., Liu, W., Jia, Y. Q., et al., 2015. Going Deeper with Convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7–12, 2015, Boston, MA, USA. IEEE: 1–9. https://doi.org/10.1109/CVPR.2015.7298594
|
Tan, M. X., Le, Q. V., 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv: 1905.11946. https://doi.org/10.48550/arXiv.1905.11946
|
|
|
/
〈 |
|
〉 |