Quantitatively Evaluating the Erosion and Preservation of Supergene Oxide Zones: Evidence from the Yulong Porphyry Cu Deposit, Eastern Tibetan Plateau

Xiao-Dong Deng , Jian-Wei Li

Journal of Earth Science ›› 2024, Vol. 35 ›› Issue (1) : 280 -282.

PDF
Journal of Earth Science ›› 2024, Vol. 35 ›› Issue (1) : 280 -282. DOI: 10.1007/s12583-023-1952-x
Editorials

Quantitatively Evaluating the Erosion and Preservation of Supergene Oxide Zones: Evidence from the Yulong Porphyry Cu Deposit, Eastern Tibetan Plateau

Author information +
History +
PDF

Cite this article

Download citation ▾
Xiao-Dong Deng, Jian-Wei Li. Quantitatively Evaluating the Erosion and Preservation of Supergene Oxide Zones: Evidence from the Yulong Porphyry Cu Deposit, Eastern Tibetan Plateau. Journal of Earth Science, 2024, 35(1): 280-282 DOI:10.1007/s12583-023-1952-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alpers C N, Brimhall G H. Middle Miocene Climatic Change in the Atacama Desert, Northern Chile: Evidence from Supergene Mineralization at La Escondida. Geological Society of America Bulletin, 1988, 100(10): 1640-1656.

[2]

Andreu E, Torró L, Proenza J A, . Weathering Profile of the Cerro de Maimón VMS Deposit (Dominican Republic): Textures, Mineralogy, Gossan Evolution and Mobility of Gold and Silver. Ore Geology Reviews, 2015, 65: 165-179.

[3]

Andrew R L. The Geochemistry of Selected Base-Metal Gossans, Southern Africa. Journal of Geochemical Exploration, 1984, 22(1–3): 161-192.

[4]

Braxton D P, Cooke D R, Ignacio A M, . Ultra-Deep Oxidation and Exotic Copper Formation at the Late Pliocene Boyongan and Bayugo Porphyry Copper-Gold Deposits, Surigao, Philippines: Geology, Mineralogy, Paleoaltimetry, and Their Implications for Geologic, Physiographic, and Tectonic Controls. Economic Geology, 2009, 104(3): 333-349.

[5]

Brimhall G H, Alpers C N, Cunningham A B. Analysis of Supergene Ore-Forming Processes and Ground-Water Solute Transport Using Mass Balance Principles. Economic Geology, 1985, 80(5): 1227-1256.

[6]

Deng X-D, Li J-W, Shuster D L. Late Mio-Pliocene Chemical Weathering of the Yulong Porphyry Cu Deposit in the Eastern Tibetan Plateau Constrained by Goethite (U-Th)/He Dating: Implication for Asian Summer Monsoon. Earth and Planetary Science Letters, 2017, 472: 289-298.

[7]

Dill H G. Pyrometallurgical Relics of Pb-Cu-Fe Deposits in South-Eastern Germany: An Exploration Tool and a Record of Mining History. Journal of Geochemical Exploration, 2009, 100(1): 37-50.

[8]

Heim J A, Vasconcelos P M, Shuster D L, . Dating Paleochannel Iron Ore by (U-Th)/He Analysis of Supergene Goethite, Hamersley Province, Australia. Geology, 2006, 34(3): 173-176.

[9]

Quang C X, Clark A H, Lee J K W, . Response of Supergene Processes to Episodic Cenozoic Uplift, Pediment Erosion, and Ignimbrite Eruption in the Porphyry Copper Province of Southern Perú. Economic Geology, 2005, 100(1): 87-114.

[10]

Shuster D L, Vasconcelos P M, Heim J A, . Weathering Geochronology by (U-Th)/He Dating of Goethite. Geochimica et Cosmochimica Acta, 2005, 69(3): 659-673.

[11]

Taylor, R., 2011. Gossans and Leached Cappings: Field Assessment. Springer Science & Business Media. 146

[12]

Thornber M R, Allchurch P D, Nickel E H. Variations in Gossan Geochemistry at the Perseverance Nickel Sulfide Deposit, Western Australia; A Descriptive and Experimental Study. Economic Geology, 1981, 76(6): 1764-1774.

[13]

Vasconcelos P M, Reich M, Shuster D L. The Paleoclimatic Signatures of Supergene Metal Deposits. Elements, 2015, 11(5): 317-322.

[14]

Velasco F, Herrero J M, Suárez S, . Supergene Features and Evolution of Gossans Capping Massive Sulphide Deposits in the Iberian Pyrite Belt. Ore Geology Reviews, 2013, 53: 181-203.

[15]

Yoo K, Mudd S M. Discrepancy between Mineral Residence Time and Soil Age: Implications for the Interpretation of Chemical Weathering Rates. Geology, 2008, 36(1): 35-38.

AI Summary AI Mindmap
PDF

197

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/