Petrogenesis of the Dengying Formation Dolomite in Northeast Sichuan Basin, SW China: Constraints from Carbon-Oxygen Isotopic and Trace Elemental Data

Yuan He, Wenqi Li, Huichuan Liu, Nansheng Qiu, Kunyu Li, Cheng Xi, Xiaoliang Bai, Hongyu Long, Youlian Chen

Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (1) : 75-88.

Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (1) : 75-88. DOI: 10.1007/s12583-022-1732-z
Petroleum, Natural Gas Geology and Coalfield Geology

Petrogenesis of the Dengying Formation Dolomite in Northeast Sichuan Basin, SW China: Constraints from Carbon-Oxygen Isotopic and Trace Elemental Data

Author information +
History +

Abstract

The widespread dolomite of the Sinian Dengying Formation in the Sichuan Basin (China) serves as one of the most important oil and gas reservoir rocks of the basin. Well WT1, as an exploration well, is recently drilled in the Kaijiang County, northeastern Sichuan Basin (SW China), and it drills through the Dengying Formation dolomite at the depth interval of 7 500–7 580 m. In this study, samples are systematically collected from the cores of that interval, followed by new analyses of carbon-oxygen isotope, major elements, trace elements, rare earth elements (REEs) and EPMA. The Dengying Formation dolomites of Well WT1 have δ13C values of 0.37‰ to 2.91‰ and δ18O values of −5.72% to −2.73%, indicating that the dolomitization fluid is derived from contemporary seawater in the near-surface environment, rather than the burial environment. Based on the REE patterns of EPMA-based in-situ data, we recognized the seawater-sourced components, the mixed-sourced components and the terrigenous-sourced components, indicating the marine origin of the dolomite with detrital contamination and diagenetic alteration. Moreover, high Al, Th, and Zr contents indicate significant detrital contamination derived from clay and quartz minerals, and high Sr/Ba and Sr/Cu ratios imply a relatively dry depositional environment with extremely high seawater salinity, intensive evaporation, and strong influences of terrigenous sediment.

Cite this article

Download citation ▾
Yuan He, Wenqi Li, Huichuan Liu, Nansheng Qiu, Kunyu Li, Cheng Xi, Xiaoliang Bai, Hongyu Long, Youlian Chen. Petrogenesis of the Dengying Formation Dolomite in Northeast Sichuan Basin, SW China: Constraints from Carbon-Oxygen Isotopic and Trace Elemental Data. Journal of Earth Science, 2025, 36(1): 75‒88 https://doi.org/10.1007/s12583-022-1732-z

References

[]
Adams J E, Rhodes M L. Dolomitization by Seepage Refluxion. AAPG Bulletin, 1960, 44 1912-1920
[]
Badiozomani K. The Dorag Dolomitization Model: Application to the Middle Ordovician of Wisconsin. SEPM Journal of Sedimentary Research, 1973, 43(4): 965-984
[]
Bau M. Rare-Earth Element Mobility during Hydrothermal and Metamorphic Fluid-Rock Interaction and the Significance of the Oxidation State of Europium. Chemical Geology, 1991, 93(3/4): 219-230.
CrossRef Google scholar
[]
Bau M, Möller P, Dulski P. Yttrium and Lanthanides in Eastern Mediterranean Seawater and Their Fractionation during Redox-Cycling. Marine Chemistry, 1997, 56(1/2): 123-131.
CrossRef Google scholar
[]
Bayon G, Toucanne S, Skonieczny C . Rare Earth Elements and Neodymium Isotopes in World River Sediments Revisited. Geochimica et Cosmochimica Acta, 2015, 170 17-38.
CrossRef Google scholar
[]
Chang B, Li C, Liu D . Massive Formation of Early Diagenetic Dolomite in the Ediacaran Ocean: Constraints on the “Dolomite Problem”. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25): 14005-14014.
CrossRef Google scholar
[]
Dai J X, Ni Y Y, Liu Q Y . Sichuan Super Gas Basin in Southwest China. Petroleum Exploration and Development, 2021, 48(6): 1251-1259.
CrossRef Google scholar
[]
Davies G R, Smith L B Jr. Structurally Controlled Hydrothermal Dolomite Reservoir Facies: An Overview. AAPG Bulletin, 2006, 90(11): 1641-1690.
CrossRef Google scholar
[]
De Baar H J W, Bacon M P, Brewer P G . Rare Earth Elements in the Pacific and Atlantic Oceans. Geochimica et Cosmochimica Acta, 1985, 49(9): 1943-1959.
CrossRef Google scholar
[]
De Baar H J W, Brewer P G, Bacon M P. Anomalies in Rare Earth Distributions in Seawater: Gd and Tb. Geochimica et Cosmochimica Acta, 1985, 49(9): 1961-1969.
CrossRef Google scholar
[]
Fairchild I J, Spiro B. Petrological and Isotopic Implications of Some Contrasting Late Precambrian Carbonates, NE Spitsbergen. Sedimentology, 1987, 34(6): 973-989.
CrossRef Google scholar
[]
Feng M Y, Wu P C, Qiang Z T . Hydrothermal Dolomite Reservoir in the Precambrian Dengying Formation of Central Sichuan Basin, Southwestern China. Marine and Petroleum Geology, 2017, 82 206-219.
CrossRef Google scholar
[]
Garzanti E, Ando S, France-Lanord C . Mineralogical and Chemical Variability of Fluvial Sediments 2. Suspended-Load Silt (Ganga-Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 2011, 302(1/2): 107-120.
CrossRef Google scholar
[]
German C R, Elderfield H. Application of the Ce-Anomaly as a Paleoredox Indicator: The Ground Rules. Paleoceanography, 1990, 5(5): 823-833.
CrossRef Google scholar
[]
Gong Q L, Li F, Lu C J . Tracing Seawater- and Terrestrial-Sourced REE Signatures in Detritally Contaminated, Diagenetically Altered Carbonate Rocks. Chemical Geology, 2021, 570 120169.
CrossRef Google scholar
[]
Gu Z D, Yin J F, Jiang H . Discovery of Xuanhan-Kaijiang Paleouplift and Its Significance in the Sichuan Basin, SW China. Petroleum Exploration and Development, 2016, 43(6): 893-904. in Chinese with English Abstract)
CrossRef Google scholar
[]
Guo, C., Chen, D. Z., Fu, Y. 2022. Origin of Burrow-Associated Dolomites and Its Reservoir Implications: A Case Study from the Lower - Middle Ordovician Carbonates of Tarim Basin (NW China). Journal of Earth Science. https://doi.org/10.1007/s12583-022-1673-6
[]
Guo Y, Du X F, Yang B. Geochemical Characteristics and Genesis of Upper Sinian-Lower Paleozoic Dolomite in Lower Yangtze Region: A Case Study from Nanjing Area. Earth Science, 2023, 48(12): 4558-4574 (in Chinese with English Abstract)
[]
Hao F, Zhang X F, Wang C W . The Fate of CO2 Derived from Thermochemical Sulfate Reduction (TSR) and Effect of TSR on Carbonate Porosity and Permeability, Sichuan Basin, China. Earth-Science Reviews, 2015, 141 154-177.
CrossRef Google scholar
[]
He D F, Li D S, Zhang G W . Formation and Evolution of Multi-Cycle Superposed Sichuan Basin, China. Chinese Journal of Geology (Scientia Geologica Sinica), 2011, 46(3): 589-606 (in Chinese with English Abstract)
[]
He X Y, Shou J F, Shen A J . Geochemical Characteristics and Origin of Dolomite: A Case Study from the Middle Assemblage of Majiagou Formation Member 5 of the West of Jingbian Gas Field, Ordos Basin, North China. Petroleum Exploration and Development, 2014, 41(3): 375-384. in Chinese with English Abstract)
CrossRef Google scholar
[]
He Y, Wen L, Luo B . Source and Tectonic Background Analysis of the Sinian Doushangtuo Formation in Well WT1 in Kaijiang Area, Sichuan Basin. Journal of Paleogeography (Chinese Edition), 2021, 23(4): 683-702 (in Chinese with English Abstract)
[]
He Y, Zhou G, Li K Y . Stratigraphic Attribution of 7590–8060 m Sect of WT1 Well in Northeastern Sichuan and Its Enlightenment to Oil and Gas Exploration. Geological Bulletin of China, 2021, 40(9): 1502-1513 (in Chinese with English Abstract)
[]
Hu Y J, Cai C F, Liu D W . Formation, Diagenesis and Palaeoenvironmental Significance of Upper Ediacaran Fibrous Dolomite Cements. Sedimentology, 2020, 67(2): 1161-1187.
CrossRef Google scholar
[]
Jarvis K E, Gray A L, McCurdy E. Avoidance of Spectral Interference on Europium in Inductively Coupled Plasma Mass Spectrometry by Sensitive Measurement of the Doubly Charged Ion. Journal of Analytical Atomic Spectrometry, 1989, 4(8): 743-747.
CrossRef Google scholar
[]
Jiang Y Q, Tao Y Z, Gu Y F . Hydrothermal Dolomitization in Sinian Dengying Formation, Gaoshiti-Moxi Area, Sichuan Basin, SW China. Petroleum Exploration and Development, 2016, 43(1): 51-60. in Chinese with English Abstract)
CrossRef Google scholar
[]
Jin M D, Tan X C, Li B S . Genesis of Dolomite in the Sinian Dengying Formation in the Sichuan Basin. Acta Sedimentologica Sinica, 2019, 37(3): 443-454 (in Chinese with English Abstract)
[]
Kaufman A J, Knoll A H. Neoproterozoic Variations in the C-Isotopic Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 1995, 73(1/2/3/4): 27-49.
CrossRef Google scholar
[]
Lan C J, Xu Z H, Yang D L . Stratigraphy and Depositional Evolution of the Terminal Ediacaran Platform in the Central to Northern Sichuan Basin, Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 601 111142.
CrossRef Google scholar
[]
Lan C J, Xu Z H, Chen H R . Paleoceanographic Reconstruction of the Ediacaran Dengying Formation, Sichuan Basin, Southwest China: Implications for the Origin of Precambrian Microbial Carbonates. Journal of Asian Earth Sciences, 2022, 236 105340.
CrossRef Google scholar
[]
Lawrence M G, Greig A, Collerson K D . Rare Earth Element and Yttrium Variability in South East Queensland Waterways. Aquatic Geochemistry, 2006, 12 39-72.
CrossRef Google scholar
[]
Li B, Yan J X, Liu X T . The Organogenic Dolomite Model: Mechanism, Progress and Significance. Journal of Palaeogeography, 2010, 12(6): 699-710 (in Chinese with English Abstract)
[]
Li D, Ling H F, Jiang S Y . New Carbon Isotope Stratigraphy of the Ediacaran-Cambrian Boundary Interval from SW China: Implications for Global Correlation. Geological Magazine, 2009, 146(4): 465-484.
CrossRef Google scholar
[]
Li S Z, Li X Y, Wang G Z . Global Meso-Neoproterozoic Plate Reconstruction and Formation Mechanism for Precambrian Basins: Constraints from Three Cratons in China. Earth-Science Reviews, 2019, 198 102946.
CrossRef Google scholar
[]
Li W Q, Liu H C, Li P P . Dolomitization Fluid Characteristics and Petrogenesis of the Dengying Formation Dolomite in the Sichuan Basin, SW China. Earth Science, 2023, 48(9): 3360-3377 (in Chinese with English Abstract)
[]
Li Z X, Bogdanova S V, Collins A S . Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 2008, 160(1/2): 179-210.
CrossRef Google scholar
[]
Li Z Y, Jiang H, Wang Z C . Control of Tectonic Movement on Hydrocarbon Accumulation in the Sinian Strata, Sichuan Basin. Natural Gas Industry, 2014, 34(3): 23-30 (in Chinese with English Abstract)
[]
Liu S G, Deng B, Li Z W . The Texture of Sedimentary Basin-Orogenic Belt System and Its Influence on Oil/Gas Distribution: A Case Study from Sichuan Basin. Acta Petrologica Sinica, 2011, 27(3): 621-635 (in Chinese with English Abstract)
[]
Luo Z L. On the Occurrence of Yangtze Old Plate and Its Influence on the Evolution of Lithosphere in the Southern Part of China. China Journal of Geology, 1979, 14(2): 127-138 (in Chinese with English Abstract)
[]
McKenzie J A, Hsü K J, Schneider J F Zenger D H, Dunham J B, Ethington R L. Movement of Subsurface Waters under the Sabkha, Abu Dhabi, UAE, and Its Relation to Evaporative Dolomite Genesis. Concepts and Models of Dolomitization, 1980 11-30.
CrossRef Google scholar
[]
Meyer E E, Quicksall A N, Landis J D . Trace and Rare Earth Elemental Investigation of a Sturtian Cap Carbonate, Pocatello, Idaho: Evidence for Ocean Redox Conditions before and during Carbonate Deposition. Precambrian Research, 2012, 192 89-106.
CrossRef Google scholar
[]
Ni S Q, Hou Q L, Wang A J . Geochemical Characteristics of Carbonate Rocks and Its Geological Implications—Taking the Lower Palaeozoic Carbonate Rock of Beijing Area as an Example. Acta Geologica Sinica, 2010, 84(10): 1510-1516 (in Chinese with English Abstract)
[]
Nozaki Y, Zhang J Sakai H, Nozaki Y. The Rare Earth Elements and Yttrium in the Coastal/Offshore Mixing Zone of Tokyo Bay Waters and the Kuroshio. Biogeochemical Processes and Ocean Flux in the Western Pacific, 1995 Tokyo Terra Scientific Publishing Company
[]
Peng B, Li Z X, Li G R . Multiple Dolomitization and Fluid Flow Events in the Precambrian Dengying Formation of Sichuan Basin, Southwestern China. Acta Geologica Sinica - English Edition, 2018, 92(1): 311-332.
CrossRef Google scholar
[]
Qiang S T, Shen P, Zhang J . The Evolution of Carbonate Sediment Diagenesis and Pore Fluid in Dengying Formation, Central Sichuan Basin. Acta Sedimentologica Sinica, 2017, 35(4): 797-811 (in Chinese with English Abstract)
[]
Ren J S, Zhao L, Xu Q Q . Global Tectonic Position and Geodynamic System of China. Acta Geologica Sinica, 2016, 90(9): 2100-2108 (in Chinese with English Abstract)
[]
Shi Z J, Wang Y, Tian Y M . Cementation and Diagenetic Fluid of Algal Dolomites in the Sinian Dengying Formation in Southeastern Sichuan Basin. Science China (Earth Sciences), 2013, 56(2): 192-202.
CrossRef Google scholar
[]
Si C S, Hao Y, Zhou J G . Characteristics and Controlling Factors of Reservoir in Sinian Dengying Formation, Sichuan Basin. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41 266-273 (in Chinese with English Abstract)
[]
Sverjensky D A. Europium Redox Equilibria in Aqueous Solution. Earth and Planetary Science Letters, 1984, 67(1): 70-78.
CrossRef Google scholar
[]
Taylor S R, McLennan S M. The Continental Crust, Its Composition and Evolution. The Journal of Geology, 1985, 94(4): 57-72
[]
Tostevin R, Shields G A, Tarbuck G M . Effective Use of Cerium Anomalies as a Redox Proxy in Carbonate-Dominated Marine Settings. Chemical Geology, 2016, 438 146-162.
CrossRef Google scholar
[]
Tostevin R, Wood R A, Shields G A . Low-Oxygen Waters Limited Habitable Space for Early Animals. Nature Communications, 2016, 7 12818.
CrossRef Google scholar
[]
Tucker M E, Wright V P, Dickson A D Carbonate Sedimentology, 1990 Oxford Blackwell.
CrossRef Google scholar
[]
Wang G W, Hao F, Zhang W B . Characterization and Origin of Micropores in Tight Gas Grainstones of the Lower Triassic Feixianguan Formation in the Jiannan Gas Field, Sichuan Basin. Marine and Petroleum Geology, 2022, 139 105609.
CrossRef Google scholar
[]
Wang J B, He Z L, Zhu D Y . Petrological and Geochemical Characteristics of the Botryoidal Dolomite of Dengying Formation in the Yangtze Craton, South China: Constraints on Terminal Ediacaran “Dolomite Seas”. Sedimentary Geology, 2020, 406 105722.
CrossRef Google scholar
[]
Wang L C, Hu W X, Wang X L . Seawater Normalized REE Patterns of Dolomites in Geshan and Panlongdong Sections, China: Implications for Tracing Dolomitization and Diagenetic Fluids. Marine and Petroleum Geology, 2014, 56 63-73.
CrossRef Google scholar
[]
Wang X Z, Mu S G, Fang S X . Evolution of Porosity in the Process of Sinian Dolostone Diagenesis in Southwest Sichuan. Acta Sedimentologica Sinica, 2000, 18(4): 549-554 (in Chinese with English Abstract)
[]
Warren J. Dolomite: Occurrence, Evolution and Economically Important Associations. Earth-Science Reviews, 2000, 52(1/2/3): 1-81.
CrossRef Google scholar
[]
Wu T, Xie S Y, Zhang D W . Geochemical Characteristics and Fluid Origin of the Dengying Formation Dolomites in Southern Sichuan Basin. Oil & Gas Geology, 2016, 37(5): 721-730 (in Chinese with English Abstract)
[]
Xu Z H, Lan C J, Hao F . Difference of Mound-Bank Complex Reservoir under Different Palaeogeographic Environment of the Sinian Dengying Formation in Sichuan Basin. Journal of Palaeogeography (Chinese Edition), 2020, 22(2): 235-250 (in Chinese with English Abstract)
[]
Xu Z H, Lan C J, Ma X L . Sedimentary Models and Physical Properties of Mound-Shoal Complex Reservoirs in Sinian Dengying Formation, Sichuan Basin. Earth Science, 2020, 45 1281-1294 (in Chinese with English Abstract)
[]
Yang Y M, Wen L, Luo B . Sedimentary Tectonic Evolution and Reservoir-Forming Conditions of the Dazhou-Kaijiang Paleo-Uplift, Sichuan Basin. Natural Gas Industry, 2016, 36(8): 1-10 (in Chinese with English Abstract)
[]
Yao G S, Hao Y, Zhou J G . Formation and Evolution of Reservoir Spaces in Sinian Dengying Formation, Sichuan Basin. Natural Gas Industry, 2014, 34 31-37 (in Chinese with English Abstract)
[]
You X L, Sun S, Zhu J Q . Advances in Microbial Dolomite Model. Earth Science Frontiers, 2011, 18 52-64 (in Chinese with English Abstract)
[]
Zempolich W G, Wilkinson B H, Lohmann K C. Diagenesis of Late Proterozoic Carbonates: The Beck Spring Dolomite of Eastern California. SEPM Journal of Sedimentary Research, 1988, 58(4): 656-672
[]
Zenger D H, Dunham J B, Ethington R L Zenger D H, Dunham J B, Ethington R L. Concepts and Models of Dolomitization. Society of Economic Paleontologists and Mineralogists, 1980 320
[]
Zhang K J, Li Q H, Yan L L . Geochemistry of Limestones Deposited in Various Plate Tectonic Settings. Earth-Science Reviews, 2017, 167 27-46.
CrossRef Google scholar
[]
Zhao J H, Li Q W, Liu H . Neoproterozoic Magmatism in the Western and Northern Margins of the Yangtze Block (South China) Controlled by Slab Subduction and Subduction-Transform-Edge-Propagator. Earth-Science Reviews, 2018, 187 1-18.
CrossRef Google scholar
[]
Zhao G C, Wang Y J, Huang B C . Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. Earth-Science Reviews, 2018, 186 262-286.
CrossRef Google scholar
[]
Zhao W Z, Wei G Q, Yang W . Discovery of Wanyuan-Dazhou Intracratonic Rift and Its Exploration Significance in the Sichuan Basin, SW China. Petroleum Exploration and Development, 2017, 44(5): 659-669. in Chinese with English Abstract)
CrossRef Google scholar
[]
Zhao W Z, Zhang S C, He K . Origin of Conventional and Shale Gas in Sinian-Lower Paleozoic Strata in the Sichuan Basin: Relayed Gas Generation from Liquid Hydrocarbon Cracking. AAPG Bulletin, 2019, 103(6): 1265-1296.
CrossRef Google scholar
[]
Zhong S J, Mucci A. Partitioning of Rare Earth Elements (REEs) between Calcite and Seawater Solutions at 25 °C and 1 Atm, and High Dissolved REE Concentrations. Geochimica et Cosmochimica Acta, 1995, 59(3): 443-453.
CrossRef Google scholar
[]
Zhou M F, Yan D P, Kennedy A K . SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 2002, 196(1/2): 51-67.
CrossRef Google scholar
[]
Zhou Y, Yang F L, Ji Y L . Characteristics and Controlling Factors of Dolomite Karst Reservoirs of the Sinian Dengying Formation, Central Sichuan Basin, Southwestern China. Precambrian Research, 2020, 343 105708.
CrossRef Google scholar
[]
Zhu D Y, Jin Z J, Sun D S . Hydrothermally Dolomitized Reservoir Bed in Sinian Dengying Formation, Northern China: An Example from Central Guizhou Uplift. Chinese Journal of Geology (Scientia Geologica Sinica), 2014, 49(1): 161-175 (in Chinese with English Abstract)
[]
Zhu D Y, Zhang D W, Zhang R Q . Role of Oil Charge in Preservation of Deep Dolomite Reservoir Space. Acta Geologica Sinica, 2015, 89(4): 794-804 (in Chinese with English Abstract)

Accesses

Citations

Detail

Sections
Recommended

/