In-situ Horizontal Extrusion Test of Herbaceous Root-Soil with Different Root Types

Fangcui Liu, Shengwen Qi, Shenglin Qi, Xiaokun Hou, Yanrong Li, Guangming Luo, Lei Xue, Xueliang Wang, Juanjuan Sun, Songfeng Guo, Bowen Zheng

Journal of Earth Science ›› 2024, Vol. 35 ›› Issue (3) : 918-928. DOI: 10.1007/s12583-022-1661-x
Seismology and Geohazards

In-situ Horizontal Extrusion Test of Herbaceous Root-Soil with Different Root Types

Author information +
History +

Abstract

The influence of different types of roots on the soil is complex and still remains unclear. Four in-situ extrusion tests were conducted on two types of root systems, namely fibrous and tap root system, for three plants, Eleusine indica, Potentilla anserine, and Artemisia argyi, according to the classification in Botany, and the thrust-displacement curves and failure patterns of different samples were analysed by comparison to fill the aforementioned gap. Results reveal that the roots can reduce the characteristics of soil brittleness and enhance its capability to resist large deformation, and different root types contribute different effects to the strain-hardening behavior of the root-soil mass. The contribution of the fibrous root system to strength is limited, whilst the tap root system substantially enhances strength and stiffness. Results of failure patterns show that fibrous and tap root systems affect soil solidification and surface cracking reduction. However, the effect of the tap root system depends on the composition of lateral and tap roots: long and rich lateral roots are effective for resisting the creation of cracks, but thick tap roots with few and thin lateral roots may lead to several surface cracks.

Keywords

root types / fibrous root / tap root / in-situ horizontal extrusion test / root-soil / cracks / slope protection

Cite this article

Download citation ▾
Fangcui Liu, Shengwen Qi, Shenglin Qi, Xiaokun Hou, Yanrong Li, Guangming Luo, Lei Xue, Xueliang Wang, Juanjuan Sun, Songfeng Guo, Bowen Zheng. In-situ Horizontal Extrusion Test of Herbaceous Root-Soil with Different Root Types. Journal of Earth Science, 2024, 35(3): 918‒928 https://doi.org/10.1007/s12583-022-1661-x

References

[]
Abdi E, Majnounian B, Genet M, et al.. Quantifying the Effects of Root Reinforcement of Persian Ironwood (Parrotia persica) on Slope Stability; A Case Study: Hillslope of Hyrcanian Forests, Northern Iran. Ecological Engineering, 2010, 36(10): 1409-1416,
CrossRef Google scholar
[]
Abe K, Ziemer R R. Effect of Tree Roots on a Shear Zone: Modeling Reinforced Shear Stress. Canadian Journal of Forest Research, 1991, 21(7): 1012-1019,
CrossRef Google scholar
[]
Abernethy B, Rutherfurd I D. The Distribution and Strength of Riparian Tree Roots in Relation to Riverbank Reinforcement. Hydrological Processes, 2001, 15(1): 63-79,
CrossRef Google scholar
[]
Ali, F. H., Osman, N., 2007. Soil-Roots Composite: Correlation between Shear Strength and some Plant Properties. Electronic Journal of Geotechnical Engineering, 12D. (2020-1-24)[2022-3-26]. http://eprints.um.edu.my/id/eprint/6243
[]
Campbell K A, Hawkins C D B. Paper Birch and Lodgepole Pine Root Reinforcement in Coarse-, Medium-, and Fine-Textured Soils. Canadian Journal of Forest Research, 2003, 33(8): 1580-1586,
CrossRef Google scholar
[]
Comino E, Marengo P. Root Tensile Strength of Three Shrub Species: Rosa canina, Cotoneaster dammeri and Juniperus horizontalis: Soil Reinforcement Estimation by Laboratory Tests. CATENA, 2010, 82(3): 227-235,
CrossRef Google scholar
[]
Coutts M P, Nielsen C C N, Nicoll B C. The Development of Symmetry, Rigidity and Anchorage in the Structural Root System of Conifers. The Supporting Roots of Trees and Woody Plants: Form, Function and Physiology, 2000 Dordrecht Springer Netherlands 3-17,
CrossRef Google scholar
[]
Coutts M P. Development of the Structural Root System of Sitka Spruce. Forestry: An International Journal of Forest Research, 1983, 56(1): 1-16,
CrossRef Google scholar
[]
Coutts M P. Developmental Processes in Tree Root Systems. Canadian Journal of Forest Research, 1987, 17(8): 761-767,
CrossRef Google scholar
[]
Cui P, Lin Y M. Debris-Flow Treatment: The Integration of Botanical and Geotechnical Methods. Journal of Resources and Ecology, 2013, 4(2): 97-104,
CrossRef Google scholar
[]
Endo T, Tsutura T. The Effect of Tree Roots upon the Shearing Strength of Soil. Annual Report of the Hokkaido Branch. Tokyo Forest Experiment Station. Tokyo, 1969, 18: 167-182
[]
Fan C C, Tsai M H. Spatial Distribution of Plant Root Forces in Root-Permeated Soils Subject to Shear. Soil and Tillage Research, 2016, 156: 1-15,
CrossRef Google scholar
[]
Fan C C, Su C F. Role of Roots in the Shear Strength of Root-Reinforced Soils with High Moisture Content. Ecological Engineering, 2008, 33(2): 157-166,
CrossRef Google scholar
[]
Fredlund D G, Hung V Q. . Prediction of Volume Change in an Expansive Soil as a Result of Vegetation and Environmental Changes Expansive Clay Soils and Vegetative Influence on Shallow Foundations, 2001 Houston, Reston American Society of Civil Engineers 24-43
[]
Ge R L, Zhang C F, Meng Z J, et al.. The Shear Property Comparison of Three Roots-Soil Composites. Journal of Soil and Water Conservation, 2014, 28(2): 85-90 (in Chinese with English Abstract)
[]
Giadrossich F, Schwarz M, Cohen D, et al.. Methods to Measure the Mechanical Behaviour of Tree Roots: A Review. Ecological Engineering, 2017, 109: 256-271,
CrossRef Google scholar
[]
Gray D H, Ohashi H. Mechanics of Fiber Reinforcement in Sand. Journal of Geotechnical Engineering, 1983, 109(3): 335-353,
CrossRef Google scholar
[]
Guo C, Xu Q, Dong X J, et al.. Geohazard Recognition and Inventory Mapping Using Airborne LiDAR Data in Complex Mountainous Areas. Journal of Earth Science, 2021, 32(5): 1079-1091,
CrossRef Google scholar
[]
Gyssels G, Poesen J. The Importance of Plant Root Characteristics in Controlling Concentrated Flow Erosion Rates. Earth Surface Processes and Landforms, 2003, 28(4): 371-384,
CrossRef Google scholar
[]
Hua J X, Zheng J G. . Geological Engineering Handbook, 2018 Beijing China Architecture & Building Press (in Chinese with English Abstract)
[]
Indraratna B, Fatahi B, Khabbaz H. Numerical Analysis of Matric Suction Effects of Tree Roots. Geotechnical Engineering, 2006, 159(2): 77-90
[]
Jin Y G. . Botany, 2006 Beijing Science Press (in Chinese with English Abstract)
[]
Li Q Q, Huang D, Pei S F, et al.. Using Physical Model Experiments for Hazards Assessment of Rainfall-Induced Debris Landslides. Journal of Earth Science, 2021, 32(5): 1113-1128,
CrossRef Google scholar
[]
Li Y, Cui Y F, Li Z H, et al.. Evolution of Glacier Debris Flow and Its Monitoring System along Sichuan-Tibet Traffic Corridor. Earth Science, 2022, 47(6): 1969-1984 (in Chinese with English Abstract)
[]
Lu H J, Hu X S, Fu J T, et al.. In-situ Shearing Test on the Shear Strengh of Soil Slope Reinforced by Plant Roots in Cold and Arid Environments. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(8): 1712-1721 (in Chinese with English Abstract)
[]
Ma P H, Peng J B, Zhuang J Q, et al.. Initiation Mechanism of Loess Mudflows by Flume Experiments. Journal of Earth Science, 2022, 33(5): 1166-1178,
CrossRef Google scholar
[]
Meng H, Zhang R L, Shi J S, Li C. Geological Environment Safety Evaluation. Earth Science, 2021, 46(10): 3764-3776 (in Chinese with English Abstract)
[]
Mickovski S B, Hallett P D, Bransby M F, et al.. Mechanical Reinforcement of Soil by Willow Roots: Impacts of Root Properties and Root Failure Mechanism. Soil Science Society of America Journal, 2009, 73(4): 1276-1285,
CrossRef Google scholar
[]
Ng C W-W, Leung A K, Woon K X. Effects of Soil Density on Grass-Induced Suction Distributions in Compacted Soil Subjected to Rainfall. Canadian Geotechnical Journal, 2014, 51(3): 311-321,
CrossRef Google scholar
[]
Ng C W-W, Ni J J, Leung A K, et al.. A New and Simple Water Retention Model for Root-Permeated Soils. Géotechnique Letters, 2016, 6(1): 106-111,
CrossRef Google scholar
[]
Ng C W -W. Atmosphere-Plant-Soil Interactions: Theories and Mechanisms. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 1-47 (in Chinese with English Abstract)
[]
Nilaweera N S, Nutalaya P. Role of Tree Roots in Slope Stabilisation. Bulletin of Engineering Geology and the Environment, 1999, 57(4): 337-342,
CrossRef Google scholar
[]
Normaniza O, Faisal H A, Barakbah S S. Engineering Properties of Leucaena leucocephala for Prevention of Slope Failure. Ecological Engineering, 2008, 32(3): 215-221,
CrossRef Google scholar
[]
O’Loughlin, C. L., 1981. Tree Roots and Slope Stability. What’s New in Forest Research. Forest Research Institute Publication No. 104, Rotorua, New Zealand
[]
Operstein V, Frydman S. The Influence of Vegetation on Soil Strength. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2000, 4(2): 81-89,
CrossRef Google scholar
[]
Pallewattha M, Indraratna B, Heitor A, et al.. Shear Strength of a Vegetated Soil Incorporating both Root Reinforcement and Suction. Transportation Geotechnics, 2019, 18: 72-82,
CrossRef Google scholar
[]
Pollen N. Temporal and Spatial Variability in Root Reinforcement of Streambanks: Accounting for Soil Shear Strength and Moisture. CATENA, 2007, 69(3): 197-205,
CrossRef Google scholar
[]
Shen, Z. Y., Li, G. Y., Liu, C. Y., et al., 2021. Mechanical Properties of Four Plant Roots and Shear Strength of Root-Soil Complex in the Source Region of the Yellow River. Soil and Water Conservation of China, (7): 49–52. https://doi.org/10.14123/j.cnki.swcc.2021.0168. (in Chinese with English Abstract)
[]
Stokes A, Atger C, Bengough A G, et al.. Desirable Plant Root Traits for Protecting Natural and Engineered Slopes against Landslides. Plant and Soil, 2009, 324(1): 1-30,
CrossRef Google scholar
[]
Summa V, Sinisi R, Paris E, et al.. Compositional Features of Fine Sediments Involved in the Montescaglioso Landslide (Southern Italy). Journal of Earth Science, 2022, 33(6): 1513-1525,
CrossRef Google scholar
[]
Sun C, Tang C S, Cheng Q, et al.. Stability of Soil Slope under Soil-Atmosphere Interaction. Earth Science, 2022, 47(10): 3701-3722 (in Chinese with English Abstract)
[]
Veylon G, Ghestem M, Stokes A, et al.. Quantification of Mechanical and Hydric Components of Soil Reinforcement by Plant Roots. Canadian Geotechnical Journal, 2015, 52(11): 1839-1849,
CrossRef Google scholar
[]
Waldron L J. The Shear Resistance of Root-Permeated Homogeneous and Stratified Soil. Soil Science Society of America Journal, 1977, 41(5): 843-849,
CrossRef Google scholar
[]
Waldron L J, Dakessian S. Soil Reinforcement by Roots. Soil Science, 1981, 132(6): 427-435,
CrossRef Google scholar
[]
Watson A, Phillips C, Marden M. Root Strength, Growth, and Rates of Decay: Root Reinforcement Changes of Two Tree Species and Their Contribution to Slope Stability. Stokes A, The Supporting Roots of Trees and Woody Plants: Form, Function and Physiology, 2000 Dordrecht Springer 41-19,
CrossRef Google scholar
[]
Wu T H, McOmber R M, Erb R T, et al.. Study of Soil-Root Interaction. Journal of Geotechnical Engineering, 1988, 114(12): 1351-1375,
CrossRef Google scholar
[]
Wu T H, Beal P E, Lan C. In-situ Shear Test of Soil-Root Systems. Journal of Geotechnical Engineering, 1988, 114(12): 1376-1394,
CrossRef Google scholar
[]
Wu T H, Watson A. In situ Shear Tests of Soil Blocks with Roots. Canadian Geotechnical Journal, 1998, 35(4): 579-590,
CrossRef Google scholar
[]
Wu R Z, Hu X D, Mei H B, et al.. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 2021, 46(1): 321-330 (in Chinese with English Abstract)
[]
Yu Q Q, Hu X S, Li G R, et al.. Research on Strength Model Test of Shrub Root-Soil Composite System in Cold and Arid Environments. Chinese Journal of Rock Mechanics and Engineering, 2013, 32: 1020-1031 (in Chinese with English Abstract)
[]
Zhang C Q, Chen L H, Liu Y P, et al.. Triaxial Compression Test of Soil-Root Composites to Evaluate Influence of Roots on Soil Shear Strength. Ecological Engineering, 2010, 36: 19-26, in Chinese with English Abstract)
CrossRef Google scholar
[]
Zhou Y, Li H W, Xu Q. Role of Vertical Roots of Young Yunnan Pine on Soil Reinforcement. Journal of Soil and Water Conservation, 2000, 14: 110-113 (in Chinese with English Abstract)
[]
Zhou Y, Watts D, Cheng X P, et al.. The Traction Effect of Lateral Roots of Pinus Yunnanensis on Soil Reinforcement: A Direct in situ Test. Plant and Soil, 1997, 190(1): 77-86,
CrossRef Google scholar
[]
Ziemer, R., 1981. The Role of Vegetation in the Stability of Forested Slopes. In: Proceeding of the XVII IUFRO World Congress. Kyoto. 297–308

Accesses

Citations

Detail

Sections
Recommended

/