Early Triassic Legoupil Formation in Schmidt Peninsula, Antarctic Peninsula: Provenance and Depositional Settings

Chao Zhang, Ying-Chun Cui, Chen-Guang Liu, Fang-Hua Cui, Lu-Yuan Wang, Wei-Qiang Zhang

Journal of Earth Science ›› 2024, Vol. 35 ›› Issue (2) : 317-331. DOI: 10.1007/s12583-021-1601-1
Stratigraphy and Sedimentology

Early Triassic Legoupil Formation in Schmidt Peninsula, Antarctic Peninsula: Provenance and Depositional Settings

Author information +
History +

Abstract

Geochemical compositions can be used to determine the tectonic setting of sedimentary basins, while where the link of source to sink is no longer preserved, detrital zircon age patterns can aid in resolving the original basin setting. The metasedimentary Legoupil Formation, located at Cape Legoupil and the Schmidt Peninsula, could give a hint for the tectonic evolution of Antarctic Peninsula. In this contribution, we constrain the sedimentary provenance of the Legoupil Formation through geochemistry and detrital zircon U-Pb geochronology. The petrography and geochemical features indicate that the provenance of the Legoupil Formation could be felsic rocks. Detrital zircon grains record a steady supply of Permian and Ordovician material into the Legoupil Formation. The youngest concordant zircon ages of 262 Ma suggest that the depositional time of Legoupil Formation is no older than Late Permian. The detrital zircon age spectrum of Legoupil Formation suggests that the Legoupil Formation sediments should be derived from regional sources endemic to western Gondwana prior to its breakup. Together with the previous studies, geochemistry and detrital zircons reflect an active continental margin tectonic setting and the detrital zircon spectra of Legoupil Formation are similar to the ones deposited in forearc tectonic setting.

Keywords

Schmidt Peninsula / Legoupil Formation / Trinity Peninsula Group / detrital zircons / Antarctic Peninsula / geochemistry

Cite this article

Download citation ▾
Chao Zhang, Ying-Chun Cui, Chen-Guang Liu, Fang-Hua Cui, Lu-Yuan Wang, Wei-Qiang Zhang. Early Triassic Legoupil Formation in Schmidt Peninsula, Antarctic Peninsula: Provenance and Depositional Settings. Journal of Earth Science, 2024, 35(2): 317‒331 https://doi.org/10.1007/s12583-021-1601-1

References

[]
Andersen T. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 2002, 192(1): 59-79, 2
CrossRef Google scholar
[]
Barbeau D L, Davis J T, Murray K E, et al.. Detrital-Zircon Geochronology of the Metasedimentary Rocks of North-Western Graham Land. Antarctic Science, 2010, 22(1): 65-78,
CrossRef Google scholar
[]
Bastias J, Calderón M, Israel L, et al.. The Byers Basin: Jurassic–Cretaceous Tectonic and Depositional Evolution of the Forearc Deposits of the South Shetland Islands and Its Implications for the Northern Antarctic Peninsula. International Geology Review, 2020, 62(11): 1467-1484,
CrossRef Google scholar
[]
Bhatia M R. Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks: Provenance and Tectonic Control. Sedimentary Geology, 1985, 45(1): 97-113, 2
CrossRef Google scholar
[]
Bhatia M R, Crook K A W. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193,
CrossRef Google scholar
[]
Birkenmajer K. Trinity Peninsula Group (Permo–Triassic?) at Hope Bay, Antarctic Peninsula. Polish Polar Research, 1992, 13(3–4): 215-240
[]
Birkenmajer K, Doktor M, Swierczewska A. A Turbidite Sedimentary Log of the Trinity Peninsula Group (Upper Permian–Triassic) at Paradise Harbour, Danco Coast (Antarctic Peninsula): Sedimentology and Petrology. Studia Geologica Polonica, 1997, 110: 61-90
[]
Blewett S C J, Phillips D, Matchan E L. Provenance of Cape Supergroup Sediments and Timing of Cape Fold Belt Orogenesis: Constraints from High-Precision 40Ar/39Ar Dating of Muscovite. Gondwana Research, 2019, 70: 201-221,
CrossRef Google scholar
[]
Boynton W V. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry, 1984 Amsterdam Elsevier
[]
Bradshaw J D, Vaughan A P M, Millar I L, et al.. Permo–Carboniferous Conglomerates in the Trinity Peninsula Group at View Point, Antarctic Peninsula: Sedimentology, Geochronology and Isotope Evidence for Provenance and Tectonic Setting in Gondwana. Geological Magazine, 2012, 149(4): 626-644,
CrossRef Google scholar
[]
Castillo P, Fanning C M, Hervé F, et al.. Characterisation and Tracing of Permian Magmatism in the South-Western Segment of the Gondwanan Margin; U-Pb Age, Lu-Hf and O Isotopic Compositions of Detrital Zircons from Metasedimentary Complexes of Northern Antarctic Peninsula and Western Patagonia. Gondwana Research, 2016, 36: 1-13,
CrossRef Google scholar
[]
Castillo P, Fanning C M, Pankhurst R J, et al.. Zircon O- and Hf-Isotope Constraints on the Genesis and Tectonic Significance of Permian Magmatism in Patagonia. Journal of the Geological Society, 2017, 174(5): 803-816,
CrossRef Google scholar
[]
Castillo P, Fanning C M, Riley T R. Zircon O and Hf Isotopic Constraints on the Genesis of Permian–Triassic Magmatic and Metamorphic Rocks in the Antarctic Peninsula and Correlations with Patagonia. Journal of South American Earth Sciences, 2020, 104: 102848,
CrossRef Google scholar
[]
Castillo P, Lacassie J P, Augustsson C, et al.. Petrography and Geochemistry of the Carboniferous-Triassic Trinity Peninsula Group, West Antarctica: Implications for Provenance and Tectonic Setting. Geological Magazine, 2015, 152(4): 575-588,
CrossRef Google scholar
[]
Cawood P A, Hawkesworth C J, Dhuime B. Detrital Zircon Record and Tectonic Setting. Geology, 2012, 40(10): 875-878,
CrossRef Google scholar
[]
Condie K C. Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology, 1993, 104(1): 1-37, 2/3/4
CrossRef Google scholar
[]
Cox R, Lowe D R, Cullers R L. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940,
CrossRef Google scholar
[]
Craddock J P, Fitzgerald P, Konstantinou A, et al.. Detrital Zircon Provenance of Upper Cambrian–Permian Strata and Tectonic Evolution of the Ellsworth Mountains, West Antarctica. Gondwana Research, 2017, 45: 191-207,
CrossRef Google scholar
[]
Dickinson W R, Gehrels G E. Use of U-Pb Ages of Detrital Zircons to Infer Maximum Depositional Ages of Strata: A Test Against a Colorado Plateau Mesozoic Database. Earth and Planetary Science Letters, 2009, 288(1): 115-125, 2
CrossRef Google scholar
[]
Dott R H J. Dynamics of Subaqueous Gravity Depositional Processes. AAPG Bulletin, 1963, 47(1): 104-128
[]
Elliot D H, Fanning C M, Hulett S R W. Age Provinces in the Antarctic Craton: Evidence from Detrital Zircons in Permian Strata from the Beardmore Glacier Region, Antarctica. Gondwana Research, 2015, 28(1): 152-164,
CrossRef Google scholar
[]
Fanning C M, Hervé F, Pankhurst R J, et al.. Lu-Hf Isotope Evidence for the Provenance of Permian Detritus in Accretionary Complexes of Western Patagonia and the Northern Antarctic Peninsula Region. Journal of South American Earth Sciences, 2011, 32(4): 485-496,
CrossRef Google scholar
[]
Flowerdew M J, Millar I L, Curtis M L, et al.. Combined U-Pb Geochronology and Hf Isotope Geochemistry of Detrital Zircons from Early Paleozoic Sedimentary Rocks, Ellsworth-Whitmore Mountains Block, Antarctica. Geological Society of America Bulletin, 2007, 119(3): 275-288, 4
CrossRef Google scholar
[]
Floyd P A, Leveridge B E. Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones. Journal of the Geological Society, 1987, 144(4): 531-542,
CrossRef Google scholar
[]
General Administration of Quality Supervision, InspectionQuarantine of the People’s Republic of ChinaStandardization Administration of the People’s Republic of China. . Methods for Chemical Analysis of Silicate Rocks—Part 28: Determination of 16 Major and Minor Elements Content (GB/T 14506.28-2010), 2010 Beijing Standards Press of China (in Chinese)
[]
General Administration of Quality Supervision, InspectionQuarantine of the People’s Republic of ChinaStandardization Administration of the People’s Republic of China. . Methods for Chemical Analysis of Silicate Rocks—Part 30: Determination of 44 Elements (GB/T 14506.30-2010), 2010 Beijing Standards Press of China (in Chinese)
[]
Goodge J W, Fanning C M, Brecke D M, et al.. Continuation of the Laurentian Grenville Province across the Ross Sea Margin of East Antarctica. The Journal of Geology, 2010, 118(6): 601-619,
CrossRef Google scholar
[]
Halpern M. Hadley B. The Geology of the General Bernardo O’Higgins Area, Northwest Antarctic Peninsula1. Geology and Paleontology of the Antarctic, 1965 Washington, D. C. American Geophysical Union
[]
Harker A. . Metamorphism, 1950 London Methuen and Co.
[]
Harrison C G A, Barron E J, Hay W W. Mesozoic Evolution of the Antarctic Peninsula and the Southern Andes. Geology, 1979, 7(8): 374,
CrossRef Google scholar
[]
Hawkesworth C, Dhuime B, Pietranik A, et al.. The Generation and Evolution of the Continental Crust. Journal of the Geological Society, 2010, 167: 229-248,
CrossRef Google scholar
[]
Hayashi K I, Fujisawa H, Holland H D, et al.. Geochemistry of Approximately 1.9 Ga Sedimentary Rocks from Northeastern Labrador, Canada. Geochimica et Cosmochimica Acta, 1997, 61(19): 4115,
CrossRef Google scholar
[]
Herron M M. Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data. SEPM Journal of Sedimentary Research, 1988, 58(5): 820-829
[]
Hou K J, Li Y H, Tian Y R. In situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 2009, 28(4): 481-492 (in Chinese with English Abstract)
[]
Hyden G, Tanner P W G. Late Palaeozoic–Early Mesozoic Fore-Arc Basin Sedimentary Rocks at the Pacific Margin in Western Antarctica. Geologische Rundschau, 1981, 70(2): 529-541,
CrossRef Google scholar
[]
Loske W P, Miller H, Kramm U. U-Pb Systematics of Detrital Zircons from Low-Grade Metamorphic Sandstones of the Trinity Peninsula Group (Antarctica). Journal of South American Earth Sciences, 1988, 1(3): 301-307,
CrossRef Google scholar
[]
McLennan S M. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 203-236,
CrossRef Google scholar
[]
McLennan S M, Hemming S, McDaniel D K, et al.. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Special Paper of the Geological Society of America, 1993, 284: 21-40,
CrossRef Google scholar
[]
Millar I L, Pankhurst R J, Fanning C M. Basement Chronology of the Antarctic Peninsula: Recurrent Magmatism and Anatexis in the Palaeozoic Gondwana Margin. Journal of the Geological Society, 2002, 159(2): 145-157,
CrossRef Google scholar
[]
Miller H. Oliver R L, James P R, Jago J B. The Position of Antarctica within Gondwana in the Light of Palaeozoic Orogenic Development. Antarctic Earth Science, 1983 Canberra Australian Academy of Science
[]
Nelson D A, Cottle J M. Long-Term Geochemical and Geodynamic Segmentation of the Paleo-Pacific Margin of Gondwana: Insight from the Antarctic and Adjacent Sectors. Tectonics, 2017, 36(12): 3229-3247,
CrossRef Google scholar
[]
Pankhurst R J, Rapela C W, Fanning C M, et al.. Gondwanide Continental Collision and the Origin of Patagonia. Earth-Science Reviews, 2006, 76(3): 235-257, 4
CrossRef Google scholar
[]
Pankhurst R J, Rapela C W, López de Luchi M G, et al.. The Gondwana Connections of Northern Patagonia. Journal of the Geological Society, 2014, 171(3): 313-328,
CrossRef Google scholar
[]
Pankhurst R J, Rapela C W, Loske W P, et al.. Chronological Study of the Pre-Permian Basement Rocks of Southern Patagonia. Journal of South American Earth Sciences, 2003, 16(1): 27-44,
CrossRef Google scholar
[]
Pankhurst R J, Rapela C W, Saavedra J, et al.. The Famatinian Magmatic Arc in the Central Sierras Pampeanas: An Early to Mid-Ordovician Continental Arc on the Gondwana Margin. Geological Society, London, Special Publications, 1998, 142(1): 343-367,
CrossRef Google scholar
[]
Paulsen T S, Encarnación J, Grunow A M, et al.. Detrital Mineral Ages from the Ross Supergroup, Antarctica: Implications for the Queen Maud Terrane and Outboard Sediment Provenance on the Gondwana Margin. Gondwana Research, 2015, 27(1): 377-391,
CrossRef Google scholar
[]
Pettijohn F J, Potter P E, Siever R. . Sand and Sandstone, 1972 Berlin Springer
[]
Pupin J P. Zircon and Granite Petrology. Contributions to Mineralogy and Petrology, 1980, 73(3): 207-220,
CrossRef Google scholar
[]
Riley T R, Flowerdew M J, Whitehouse M J. U-Pb Ion-Microprobe Zircon Geochronology from the Basement Inliers of Eastern Graham Land, Antarctic Peninsula. Journal of the Geological Society, 2012, 169(4): 381-393,
CrossRef Google scholar
[]
Roser B P, Cooper R A, Nathan S, et al.. Reconnaissance Sandstone Geochemistry, Provenance, and Tectonic Setting of the Lower Paleozoic Terranes of the West Coast and Nelson, New Zealand. New Zealand Journal of Geology and Geophysics, 1996, 39(1): 1-16,
CrossRef Google scholar
[]
Roser B P, Korsch R J. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. The Journal of Geology, 1986, 94(5): 635-650,
CrossRef Google scholar
[]
Roser B P, Korsch R J. Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chemical Geology, 1988, 67(1): 119-139, 2
CrossRef Google scholar
[]
Shen W Z, Shu L S, Xiang L, et al.. Geochemical Characteristics of Early Paleozoic Sedimentary Rocks in the Jinggangshan Area, Jiangxi Province and the Constraining to the Sedimentary Environment. Acta Petrologica Sinica, 2009, 25(10): 2442-2458 (in Chinese with English Abstract)
[]
Smellie J L. Thomson M R A, Crame J A, Thomson J W. Stratigraphy, Provenance and Tectonic Setting of (?) Late Palaeozoic–Triassic Sedimentary Sequences in Northern Graham Land and South Scotia Ridge. Geological Evolution of Antarctica, 1991 Cambridge Cambridge University Press
[]
Taylor S R, Mclennan S M. . The Continental Crust: Its Composition and Evolution, 1985 Oxford Blackwell Scientific Publication
[]
Thomson M R A. First Marine Triassic Fauna from the Antarctic Peninsula. Nature, 1975, 257(5527): 577-578,
CrossRef Google scholar
[]
Tokarski A. Structural Development of Legoupil Formation an Cape Legoupil, Antarctic Peninsula. Polish Polar Research, 1989, 10(4): 587-603
[]
Vaughan A P M, Storey B C. The Eastern Palmer Land Shear Zone: A New Terrane Accretion Model for the Mesozoic Development of the Antarctic Peninsula. Journal of the Geological Society, 2000, 157(6): 1243-1256,
CrossRef Google scholar
[]
Vermeesch P. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 2018, 9(5): 1479-1493,
CrossRef Google scholar
[]
Yang Z Y, Lang X H, Tang J X, et al.. Geochemical Characteristics of the Jurassic Sandstones in the Xiongcun Copper-Gold Deposit, Tibet: Constraints on Tectonic Setting. Acta Geologica Sinica, 2017, 91(9): 1985-2003 (in Chinese with English Abstract)

Accesses

Citations

Detail

Sections
Recommended

/