First Record of Cyclocarya from the Early Oligocene Qaidam Basin, North Tibet: Implications for the Paleogeography and Paleoecology
Yafei Hou, Bowen Song, Xiangchuan Li, Fang Han, Xu Zhang, Kexin Zhang
First Record of Cyclocarya from the Early Oligocene Qaidam Basin, North Tibet: Implications for the Paleogeography and Paleoecology
As the largest intermontane basin in the northeastern Tibetan Plateau (TP), the Qaidam Basin provides unique insight into paleoclimatic change and its relationship with global change and uplift on the TP. In this study, based on morphological comparison, fossil fruit of Cyclocarya from the Early Oligocene Shangganchaigou Formation in the Qaidam Basin is assigned as Cyclocarya cf. weylandii. The discovery of Cyclocarya cf. weylandii demonstrates the occurrence of Cyclocarya in the Oligocene sediment in Qaidam Basin. This is the first record of Cyclocarya fossil of Early Oligocene Age in China and indicates that Cyclocarya has existed on the northeastern TP since at least the Early Oligocene. The living analogues of the current fossil now lives in sub-tropical China, where the East Asian Monsoon is prevalent. Integrating the new fossils and previously reported fossil remains of plants and fishes, it can be inferred that the Early Oligocene Qaidam Basin was primarily influenced by westerly circulation and had a relatively warm and humid climate, which was in sharp contrast to the present-day climate in Qaidam Basin.
biostratigraphy / climate change / winged-fruit fossil / Qaidam Basin / Early Oligocene / paleoclimate / paleogeography
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
Ying, J. S., Zhang, Y. L., 1994. Endemic Genera of Seed Plants in China. Science Press, Beijing (in Chinese)
|
[80] |
|
[81] |
Zhang, X., Song, B. W., Yang, T. L., et al., 2022. Source-to-Sink Relationships between the Qaidam Basin (North Tibet) and Its Surrounding Mountain Ranges: New Insights from Detrital Zircon U-Pb Ages in Modern River Sediments. Journal of Earth Science. https://doi.org/10.1007/s12583-022-1666-5
|
[82] |
|
[83] |
|
/
〈 | 〉 |