Comparative Mineralogical and Geochemical Compositions within the Fault Gouge in the Surface Exposures of the Mw7.9 Wenchuan Earthquake Fault and Their Implications for Mass Removal and Fluid-Rock Interactions

Yangyang Wang, Sijia Li, Shiyuan Wang, Deyang Shi, Weibing Shen

Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (1) : 266-274.

Journal of Earth Science All Journals
Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (1) : 266-274. DOI: 10.1007/s12583-021-1572-2
Engineering Geology and Geohazards

Comparative Mineralogical and Geochemical Compositions within the Fault Gouge in the Surface Exposures of the Mw7.9 Wenchuan Earthquake Fault and Their Implications for Mass Removal and Fluid-Rock Interactions

Author information +
History +

Abstract

Geochemistry of the fault gouge record information on fault behaviors and environmental conditions. We investigated variations in the mineralogical and geochemical compositions of the fault gouge sampled from the margin zone (MZ) to the slip central zone (CZ) of the fault gouge in the Beichuan-Yingxiu surface rupture zone of the Wenchuan Earthquake. Results show that the clay minerals contents increase from the MZ to CZ, and the quartz and plagioclase contents slight decrease. An increasing enrichment in Al2O3, Fe2O3, and K2O are observed toward the CZ; the decomposition of quartz and plagioclase, as well as the depletion of SiO2, CaO, Na2O, and P2O5 suggest that the alkaline-earth elements are carried away by the fluids. It can be explained that the stronger coseismic actions in the CZ allow more clay minerals to form, decompose quartz and plagioclase, and alter plagioclase to chlorite. The mass loss in the CZ is larger than that in MZ, which is maybe due to the more concentrated stress in the strongly deformed CZ, however other causes will not be excluded.

Cite this article

Download citation ▾
Yangyang Wang, Sijia Li, Shiyuan Wang, Deyang Shi, Weibing Shen. Comparative Mineralogical and Geochemical Compositions within the Fault Gouge in the Surface Exposures of the Mw7.9 Wenchuan Earthquake Fault and Their Implications for Mass Removal and Fluid-Rock Interactions. Journal of Earth Science, 2025, 36(1): 266‒274 https://doi.org/10.1007/s12583-021-1572-2
This is a preview of subscription content, contact us for subscripton.

References

Anderson J L, Osborne R H, Palmer D F. Cataclastic Rocks of the San Gabriel Fault—An Expression of Deformation at Deeper Crustal Levels in the San Andreas Fault Zone. Tectonophysics, 1983, 98(3/4): 209-251.
CrossRef Google scholar
Boulton C, Carpenter B M, Toy V . Physical Properties of Surface Outcrop Cataclastic Fault Rocks, Alpine Fault, New Zealand. Geochemistry, Geophysics, Geosystems, 2012, 13(1): Q01018.
CrossRef Google scholar
Bradbury K K, Davis C R, Shervais J W . Composition, Alteration, and Texture of Fault-Related Rocks from SAFOD Core and Surface Outcrop Analogs: Evidence for Deformation Processes and Fluid-Rock Interactions. Pure and Applied Geophysics, 2015, 172(5): 1053-1078.
CrossRef Google scholar
Chen J Y, Yang X S, Duan Q B . Importance of Thermochemical Pressurization in the Dynamic Weakening of the Longmenshan Fault during the 2008 Wenchuan Earthquake: Inferences from Experiments and Modeling. Journal of Geophysical Research: Solid Earth, 2013, 118(8): 4145-4169.
CrossRef Google scholar
Chen J Y, Yang X S, Duan Q B . Integrated Measurements of Permeability, Effective Porosity, and Specific Storage of Core Samples Using Water as the Pore Fluid. International Journal of Rock Mechanics and Mining Sciences, 2015, 79 55-62.
CrossRef Google scholar
Chen J Y, Yang X S, Ma S L . Mass Removal and Clay Mineral Dehydration/Rehydration in Carbonate-Rich Surface Exposures of the 2008 Wenchuan Earthquake Fault: Geochemical Evidence and Implications for Fault Zone Evolution and Coseismic Slip. Journal of Geophysical Research: Solid Earth, 2013, 118(2): 474-496.
CrossRef Google scholar
Chen W M D, Tanaka H, Huang H J . Fluid Infiltration Associated with Seismic Faulting: Examining Chemical and Mineralogical Compositions of Fault Rocks from the Active Chelungpu Fault. Tectonophysics, 2007, 443(3/4): 243-254.
CrossRef Google scholar
Duan Q B, Yang X S, Ma S L . Fluid-Rock Interactions in Seismic Faults: Implications from the Structures and Mineralogical and Geochemical Compositions of Drilling Cores from the Rupture of the 2008 Wenchuan Earthquake, China. Tectonophysics, 2016, 666 260-280.
CrossRef Google scholar
Fu B H, Shi P L, Guo H D . Surface Deformation Related to the 2008 Wenchuan Earthquake, and Mountain Building of the Longmen Shan, Eastern Tibetan Plateau. Journal of Asian Earth Sciences, 2011, 40(4): 805-824.
CrossRef Google scholar
Goddard J V, Evans J P. Chemical Changes and Fluid-Rock Interaction in Faults of Crystalline Thrust Sheets, Northwestern Wyoming, U.S.A. Journal of Structural Geology, 1995, 17(4): 533-547.
CrossRef Google scholar
Grant J A. The Isocon Diagram: A Simple Solution to Gresens’ Equation for Metasomatic Alteration. Economic Geology, 1986, 81(8): 1976-1982.
CrossRef Google scholar
Grant J A. Isocon Analysis: A Brief Review of the Method and Applications. Physics and Chemistry of the Earth, Parts A/B/C, 2005, 30(17/18): 997-1004.
CrossRef Google scholar
Gresens R L. Composition-Volume Relationships of Metasomatism. Chemical Geology, 1967, 2 47-65.
CrossRef Google scholar
Guo S, Ye K, Chen Y . A Normalization Solution to Mass Transfer Illustration of Multiple Progressively Altered Samples Using the Isocon Diagram. Economic Geology, 2009, 104(6): 881-886.
CrossRef Google scholar
Guo S, Ye K, Chen Y . Introduction of Mass Balance Calculation Method for Component Transfer during the Opening of a Geological System. Acta Petrologica Sinica, 2013, 5 1486-1498 (in Chinese with English Abstract)
Haines S H, van der Pluijm B A. Patterns of Mineral Transformations in Clay Gouge, with Examples from Low-Angle Normal Fault Rocks in the Western USA. Journal of Structural Geology, 2012, 43 2-32.
CrossRef Google scholar
Hirono T, Fujimoto K, Yokoyama T . Clay Mineral Reactions Caused by Frictional Heating during an Earthquake: An Example from the Taiwan Chelungpu Fault. Geophysical Research Letters, 2008, 35(16): L16303.
CrossRef Google scholar
Holdsworth R E, van Diggelen E W E, Spiers C J . Fault Rocks from the SAFOD Core Samples: Implications for Weakening at Shallow Depths along the San Andreas Fault, California. Journal of Structural Geology, 2011, 33(2): 132-144.
CrossRef Google scholar
Kusky T M, Ghulam A, Wang L . Focusing Seismic Energy along Faults through Time-Variable Rupture Modes: Wenchuan Earthquake, China. Journal of Earth Science, 2010, 21(6): 910-922.
CrossRef Google scholar
Li H B, Fu X F, Si J L . Coseismic Surface Rupture and Dextral-Slip Oblique Thrusting of the Ms 8.0 Wenchuan Earthquake. Acta Petrologica Sinica, 2008, 82 1623-1643 (in Chinese with English Abstract)
Li H B, Wang H, Xu Z Q . Characteristics of the Fault-Related Rocks, Fault Zones and the Principal Slip Zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics, 2013, 584 23-42.
CrossRef Google scholar
Ma S Y, Xu C. Applicability of Two Newmark Models in the Assessment of Coseismic Landslide Hazard and Estimation of Slope-Failure Probability: An Example of the 2008 Wenchuan Mw 7.9 Earthquake Affected Area. Journal of Earth Science, 2019, 30(5): 1020-1030.
CrossRef Google scholar
Matsuda T, Omura K, Ikeda R . Fracture-Zone Conditions on a Recently Active Fault: Insights from Mineralogical and Geochemical Analyses of the Hirabayashi NIED Drill Core on the Nojima Fault, Southwest Japan, which Ruptured in the 1995 Kobe Earthquake. Tectonophysics, 2004, 378(3/4): 143-163.
CrossRef Google scholar
O’Hara K, Blackburn W H. Volume-Loss Model for Trace-Element Enrichments in Mylonites. Geology, 1989, 17(6): 524-527.
CrossRef Google scholar
Ran Y K, Chen L C, Chen G H . Primary Analyses of in-situ Recurrence of Large Earthquake along Seismogenic Fault of the Ms 8.0 Wenchuan Earthquake. Seismology and Geology, 2008, 30(3): 630-643 (in Chinese with English Abstract)
Schleicher A M, Sutherland R, Townend J . Clay Mineral Formation and Fabric Development in the DFDP-1B Borehole, Central Alpine Fault, New Zealand. New Zealand Journal of Geology and Geophysics, 2015, 58(1): 13-21.
CrossRef Google scholar
Schleicher A M, Tourscher S N, van der Pluijm B A . Constraints on Mineralization, Fluid-Rock Interaction, and Mass Transfer during Faulting at 2–3 km Depth from the SAFOD Drill Hole. Journal of Geophysical Research: Solid Earth, 2009, 114(B4): B04202.
CrossRef Google scholar
Shao C J, Yan Z K, Li Y . Dynamic Mechanism of Formation of Basin-Mountain System in Southern Segment of Longmenshan and Frontal Area in Late Miocene. Earth Science, 2023, 48(4): 1379-1388 (in Chinese with English Abstract)
Shi X, Ran Y K, Chen L C . Preliminary Study on Paleoearthquake at beichuan-Dengjia Segment along the Central Fault of Longmen Mountain. Quaternary Sciences, 2009, 29(3): 494-501 (in Chinese with English Abstract)
Solum J G, van der Pluijm B A, Peacor D R. Neocrystallization, Fabrics and Age of Clay Minerals from an Exposure of the Moab Fault, Utah. Journal of Structural Geology, 2005, 27(9): 1563-1576.
CrossRef Google scholar
Wang W F, Zhu C H, Zhang X J . Genetic Types and Geological Significances of Transverse Faults at Longmenshan Fault Zone. Earth Science, 2016, 41(5): 729-741 (in Chinese with English Abstract)
Wang Y Y, Chen J F, Li S J . Coseismic Fluid–Rock Interactions in the Yingxiu-Beichuan Surface Rupture Zone of the Mw 7.9 Wenchuan Earthquake and Their Implications for the Structural Diagenesis of Fault Rocks. Journal of Structural Geology, 2022, 159 104603.
CrossRef Google scholar
Wang Y Y, Gao X Q, Li S J . Element Enrichment/Depletion during Faulting in Shale-Rich Surface Exposures of the 2008 Wenchuan Earthquake (Mw 7.9) and Implications for Coseismic Temperature. Australian Journal of Earth Sciences, 2021, 68(5): 731-745.
CrossRef Google scholar
Wibberley C A J, Shimamoto T. Earthquake Slip Weakening and Asperities Explained by Thermal Pressurization. Nature, 2005, 436(7051): 689-692.
CrossRef Google scholar
Wu F T. Mineralogy and Physical Nature of Clay Gouge. Pure and Applied Geophysics, 1978, 116(4): 655-689.
CrossRef Google scholar
Xu Q, Dong X J. Genetic Types of Large-Scale Landslides Induced by Wenchuan Earthquake. Earth Science, 2011, 36(6): 1134-1142 (in Chinese with English Abstract)
Xu X W, Wen X Z, Ye J Q . The Ms 8.0 Wenchuan Earthquake Surface Ruptures and Its Seismogenic Structure. Seismology and Geology, 2008, 30(3): 597-629 (in Chinese with English Abstract)
Xu X W, Wen X Z, Yu G H . Coseismic Reverse- and Oblique-Slip Surface Faulting Generated by the 2008 Mw 7.9 Wenchuan Earthquake, China. Geology, 2009, 37(6): 515-518.
CrossRef Google scholar
Yang T, Chen J Y, Yang X S . Differences in Magnetic Properties of Fragments and Matrix of Breccias from the Rupture of the 2008 Wenchuan Earthquake, China: Relationship to Faulting. Tectonophysics, 2013, 601(5): 112-124.
CrossRef Google scholar
Yao L, Ma S L, Shimamoto T . Structures and High-Velocity Frictional Properties of the Pingxi Fault Zone in the Longmenshan Fault System, Sichuan, China, Activated during the 2008 Wenchuan Earthquake. Tectonophysics, 2013, 599 135-156.
CrossRef Google scholar
Yuan R M, Zhang B L, Xu X W . Microstructural Features and Mineralogy of Clay-Rich Fault Gouge at the Northern Segment of the Yingxiu-Beichuan Fault, China. Seismology and Geology, 2013, 35(4): 685-700 (in Chinese with English Abstract)
Zhu H, Wen X Z. Static Stress Triggering Effects Related with Ms 8.0 Wenchuan Earthquake. Journal of Earth Science, 2010, 21(1): 32-41.
CrossRef Google scholar

28

Accesses

0

Citations

Detail

Sections
Recommended

/