Data-Driven Combination-Interval Prediction for Landslide Displacement Based on Copula and VMD-WOA-KELM Method
Longqi Li , Yunhuang Yang , Tianzhi Zhou , Mengyun Wang
Journal of Earth Science ›› 2025, Vol. 36 ›› Issue (1) : 291 -306.
Data-Driven Combination-Interval Prediction for Landslide Displacement Based on Copula and VMD-WOA-KELM Method
To tackle the difficulties of the point prediction in quantifying the reliability of landslide displacement prediction, a data-driven combination-interval prediction method (CIPM) based on copula and variational-mode-decomposition associated with kernel-based-extreme-learning-machine optimized by the whale optimization algorithm (VMD-WOA-KELM) is proposed in this paper. Firstly, the displacement is decomposed by VMD to three IMF components and a residual component of different fluctuation characteristics. The key impact factors of each IMF component are selected according to Copula model, and the corresponding WOA-KELM is established to conduct point prediction. Subsequently, the parametric method (PM) and non-parametric method (NPM) are used to estimate the prediction error probability density distribution (PDF) of each component, whose prediction interval (PI) under the 95% confidence level is also obtained. By means of the differential evolution algorithm (DE), a weighted combination model based on the PIs is built to construct the combination-interval (CI). Finally, the CIs of each component are added to generate the total PI. A comparative case study shows that the CIPM performs better in constructing landslide displacement PI with high performance.
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
China University of Geosciences (Wuhan) and Springer-Verlag GmbH Germany, Part of Springer Nature
/
| 〈 |
|
〉 |