PDF
(12076KB)
Abstract
The flexible conductive nanofiber membrane is widely used in the field of wearable electronics.High tensile properties of electrospun nanofiber membranes are essential for their successful commercial application.With cellulose nanocrystal(CNC) as the reinforcement, the flexible conductive polyacrylonitrile(PAN)/CNC@carbon nanotube(CNT) nanofiber membrane is electrospun from the PAN solution containing suspended CNC and impregnated with the CNT solution.The structure and properties of nanofiber membranes are studied.The results show that with the increase of the PAN mass fraction, the viscosity of the electrospinning solution increases, leading to an increase in the nanofiber diameter.When the mass fraction of PAN is 12%, PAN/CNC nanofiber membranes at different CNC mass fractions are successfully prepared.The structure and properties of PAN/CNC nanofiber membranes are affected by the addition of CNC.As the CNC mass fraction increases, the nanofibers become thicker, the nanofiber diameter distribution widens, and the tensile strength first increases and then decreases.When the mass ratio of PAN to CNC is 4 ∶1, the tensile strength of the PAN/CNC nanofiber membrane is the highest, and it is higher than that of the PAN nanofiber membrane.After impregnating the PAN/CNC nanofiber membrane with CNTs, the tensile strength of the nanofiber membrane increases to 3.12 MPa and the surface resistivity is 64 Ω/cm2.The flexible conductive nanofiber membranes would be used in energy storage and sensing fields, and the study might provide a strong base for their future development.
Keywords
cellulose nanocrystal(CNC)
/
flexible conductive nanofiber membrane
/
tensile property
/
carbon nanotube(CNT)
/
electrospinning
/
polyacrylonitrile(PAN)
Cite this article
Download citation ▾
Changhuan ZHANG, Liuyao WANG, Haowen WANG, Tao MA, Hongyangzi SUN, Yi HUANG, Yiting TONG, Yang CHEN, Liran ZHANG.
Improving Tensile Properties of Flexible Conductive Polyacrylonitrile @Carbon Nanotube Nanofiber Membrane by Cellulose Nanocrystal.
Journal of Donghua University(English Edition), 2025, 42(2): 116-123 DOI:10.19884/j.1672-5220.202501015
| [1] |
HOU Y, YANG Y, WANG Z Y, et al. Whole fabric-assisted thermoelectric devices for wearable electronics[J]. Advanced Science, 2022, 9(1):e2103574.
|
| [2] |
JIA L H, LI Y H, REN A B, et al. Degradable and recyclable hydrogels for sustainable bioelectronics[J]. ACS Applied Materials & Interfaces, 2024, 16(26):32887-32905.
|
| [3] |
ZHANG L R, WU H, CHEN Y, et al. Biocompatible reduced graphene oxide ink hybridized by wool keratin for flexible strain sensor electronics[J]. ACS Applied Electronic Materials, 2024, 6(2):793-805.
|
| [4] |
LI T L, SU Y F, CHEN F Y, et al. Bioinspired stretchable fiber-based sensor toward intelligent human-machine interactions[J]. ACS Applied Materials & Interfaces, 2022, 14(19):22666-22677.
|
| [5] |
ZENG R J, WANG W J, CHEN M M, et al. CRISPR-Cas12a-driven MXene-PEDOT:PSS piezoresistive wireless biosensor[J]. Nano Energy, 2021,82:105711.
|
| [6] |
LI H, CHEN J W, CHANG X H, et al. A highly stretchable strain sensor with both an ultralow detection limit and an ultrawide sensing range[J]. Journal of Materials Chemistry A, 2021, 9(3):1795-1802.
|
| [7] |
CHEN Y, SUN Y L, WEI Y Y, et al. How far for the electronic skin:from multifunctional material to advanced applications[J]. Advanced Materials Technologies, 2023, 8(8):2201352.
|
| [8] |
FROYEN A A F, SCHENNING A P H J. A multifunctional structural coloured electronic skin monitoring body motion and temperature[J]. Soft Matter, 2023, 19(3):361-365.
|
| [9] |
LIU Y T, LUO T T, DING C B, et al. Progress in the application of flexible and wearable electrochemical sensors in monitoring biomarkers of athletes[J]. Advanced Materials Technologies, 2024, 9(23):2400619.
|
| [10] |
CORZO D, TOSTADO-BLáZQUEZ G, BARAN D. Flexible electronics:status,challenges and opportunities[J]. Frontiers in Electronics, 2020,1:594003.
|
| [11] |
QUAN Z Z, ZU Y, LEI S, et al. Parametric effects on length of stable section of electrospinning jet[J]. Journal of Donghua University (English Edition), 2021, 38 (5):417-423.
|
| [12] |
GAO T T, ZHENG J M, WANG D Y. Fabrication of high-efficiency polyvinyl alcohol nanofiber membranes for air filtration based on principle of stable electrospinning[J]. Journal of Donghua University (English Edition), 2023, 40(2):142-148.
|
| [13] |
ZHANG C H, YAO L, QIU Y P. Synthesis and characterization of LiFePO4-carbon nanofiber-carbon nanotube composites prepared by electrospinning and thermal treatment as a cathode material for lithium-ion batteries[J]. Journal of Applied Polymer Science, 2016, 133(9):43001.
|
| [14] |
ZHANG C H, LIANG Y Z, YAO L, et al. Effect of thermal treatment on the properties of electrospun LiFePO4-carbon nanofiber composite cathode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2015,627:91-100.
|
| [15] |
LI X X, SONG X H, ZHANG L R, et al. Biocompatible polylactic acid/wool keratin/carbon nanotubes fibers via electrospinning as a flexible pressure electronic sensor[J]. ACS Applied Electronic Materials, 2024, 6(8):6131-6139.
|
| [16] |
MASKE V A, KOKATE A M, MORE P A, et al. A comprehensive review of polyacrylonitrile membranes:modifications and applications[J]. Polymer Bulletin, 2024, 81(18):16415-16455.
|
| [17] |
JIANG L, LI K, YANG H Y, et al. Improving mechanical properties of electrospun cellulose acetate nanofiber membranes by cellulose nanocrystals with and without polyvinyl-pyrrolidone[J]. Cellulose, 2020, 27(2):955-967.
|
| [18] |
LU H L, CEN X M, LI F Y, et al. Facile synthesis of highly elastic and antibacterial hydrogels based on rosin-modified cellulose nanocrystals[J]. Journal of Materials Science, 2025, 60(4):2118-2130.
|
| [19] |
TRACHE D, HUSSIN M H, MOHAMAD HAAFIZ M K, et al. Recent progress in cellulose nanocrystals:sources and production[J]. Nanoscale, 2017, 9(5):1763-1786.
|
| [20] |
AROCKIASAMY F S, MANOHARAN B, SANTHI V M, et al. Navigating the nano-world future:harnessing cellulose nanocrystals from green sources for sustainable innovation[J]. Heliyon, 2025, 11(1):e41188.
|
| [21] |
YAN Y, ZU M M, YI Y J, et al. Research progress of green and low consumption preparation method of cellulose nanocrystal and its application[J/OL].Acta Materiae Compositae Sinica(2024-09-19)[2025-01-03].https://doi.org/10.13801/j.cnki.fhclxb.20240919.003. (in Chinese)
|
| [22] |
ASADNIA M, SADAT-SHOJAI M. Recent perspective of synthesis and modification strategies of cellulose nanocrystals and cellulose nanofibrils and their beneficial impact in scaffold-based tissue engineering:a review[J]. International Journal of Biological Macromolecules, 2025,293:139409.
|
| [23] |
LI Z X, FENG D L, ZHANG Z, et al. Palladium hexagonal nanoparticles/carbon nanotubes/cellulose nanocrystals integrated over paper for wearable hydrogen sensing with fast response by bridging behavior[J]. Sensors and Actuators B:Chemical, 2025,427:137153.
|
| [24] |
LIU X, ZHENG H R, CHEN Q, et al. Cellulose nanocrystals-doped hybrid matrix membranes for vanadium flow battery[J/OL]. CIESC Journal (2024-12-30)[2025-01-20]. https://link.cnki.net/urlid/11.1946. in Chinese)
|
| [25] |
MOON R J, MARTINI A, NAIRN J, et al. Cellulose nanomaterials review:structure,properties and nanocomposites[J]. Chemical Society Reviews, 2011, 40(7):3941-3994.
|
| [26] |
NG H M, SIN L T, TEE T T, et al. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers[J]. Composites Part B:Engineering, 2015,75:176-200.
|
| [27] |
RANA A K, FROLLINI E, THAKUR V K. Cellulose nanocrystals:pretreatments,preparation strategies,and surface functionalization[J]. International Journal of Biological Macromolecules, 2021,182:1554-1581.
|
| [28] |
DONG H, STRAWHECKER K E, SNYDER J F, et al. Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers:formation,properties and nanomechanical characterization[J]. Carbohydrate Polymers, 2012, 87(4):2488-2495.
|
| [29] |
XIANG C H, JOO Y L, FREY M W. Nanocomposite fibers electrospun from poly(lactic acid)/cellulose nanocrystals[J]. Journal of Biobased Materials and Bioenergy, 2009, 3(2):147-155.
|
| [30] |
REBOUILLAT S, PLA F. State of the art manufacturing and engineering of nanocellulose:a review of available data and industrial applications[J]. Journal of Biomaterials and Nanobiotechnology, 2013,4:165-188.
|
Funding
Beijing Municipal Education Commission, China(KM202210012009)
Beijing Municipal Education Commission, China(202410012002)
National Natural Science Foundation of China(52202015)
Project of Constructing the Emerging Interdisciplinary Platform Based on “Clothing Science” of Beijing Institute of Fashion Technology, China(11000024T000003073871)
XXX Key Laboratory of China(HTKJ2024KL703002)