A Real-Time Detection Method for Fashion Necklines Based on Deep Learning

Caixia CHEN , Linxin JIANG

Journal of Donghua University(English Edition) ›› 2025, Vol. 42 ›› Issue (3) : 301 -314.

PDF (12094KB)
Journal of Donghua University(English Edition) ›› 2025, Vol. 42 ›› Issue (3) :301 -314. DOI: 10.19884/j.1672-5220.202411017
Artificial Intelligence on Fashion and Textiles
research-article

A Real-Time Detection Method for Fashion Necklines Based on Deep Learning

Author information +
History +
PDF (12094KB)

Abstract

Accurate detection of fashion design attributes is essential for trend analyses and recommendation systems. Among these attributes, the neckline style plays a key role in shaping garment aesthetics. However, the presence of complex backgrounds and varied body postures in real-world fashion images presents challenges for reliable neckline detection. To address this problem, this research builds a comprehensive fashion neckline database from online shop images and proposes an efficient fashion neckline detection model based on the YOLOv8 architecture(FN-YOLO). First, the proposed model incorporates a BiFormer attention mechanism into the backbone, enhancing its feature extraction capability. Second, a lightweight multi-level asymmetry detector head(LADH) is designed to replace the original head, effectively reducing the computational complexity and accelerating the detection speed. Last, the original loss function is replaced with Wise-IoU, which improves the localization accuracy of the detection box. The experimental results demonstrate that FN-YOLO achieves a mean average precision(mAP) of 81.7%, showing an absolute improvement of 3.9% over the original YOLOv8 model, and a detection speed of 215.6 frame/s, confirming its suitability for real-time applications in fashion neckline detection.

Keywords

fashion neckline detection / deep learning / detection and classification / real time / YOLOv8

Cite this article

Download citation ▾
Caixia CHEN, Linxin JIANG. A Real-Time Detection Method for Fashion Necklines Based on Deep Learning. Journal of Donghua University(English Edition), 2025, 42(3): 301-314 DOI:10.19884/j.1672-5220.202411017

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KUMAR A. From mass customization to mass personalization:a strategic transformation[J]. International Journal of Flexible Manufacturing Systems, 2007, 19(4):533-547.

[2]

LEE S H N, CHOW P S. Investigating consumer attitudes and intentions toward online fashion renting retailing[J]. Journal of Retailing and Consumer Services, 2020,52:101892.

[3]

NAM Y R, KIM D E. A study on the comparison of 3D virtual clothing and real clothing by neckline type[J]. Fashion & Textile Research Journal, 2021, 23(2):247-260.

[4]

SHOUKAT S. Now and then:the neckline history of women[J]. American Scientific Research Journal for Engineering,Technology,and Sciences, 2016, 26(2):33-52.

[5]

TERVEN J, CóRDOVA-ESPARZA D M, ROMERO-GONZáLEZ J A. A comprehensive review of YOLO architectures in computer vision:from YOLOv1 to YOLOv8 and YOLO-NAS[J]. Machine Learning and Knowledge Extraction, 2023, 5(4):1680-1716.

[6]

DONATI L, IOTTI E, MORDONINI G, et al. Fashion product classification through deep learning and computer vision[J]. Applied Sciences, 2019, 9(7):1385.

[7]

LAO B, JAGADEESH K.Convolutional neural networks for fashion classification and object detection[C]//The 2015 Chinese Conference on Computer Vision (CCCV). Berlin: Springer, 2015:120-129.

[8]

WANG W G, XU Y L, SHEN J B, et al. Attentive fashion grammar network for fashion landmark detection and clothing category classification[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE,2018:4271-4280.

[9]

LI D, WAN X F, WANG J, et al. Clothing style recognition approach based on the curvature feature points on the contour[J]. Journal of Donghua University (Natural Science), 2018, 44(1):87-92. (in Chinese)

[10]

SEO Y, SHIN K S. Hierarchical convolutional neural networks for fashion image classification[J]. Expert Systems with Applications, 2019,116:328-339.

[11]

SUN G L, WU X, CHEN H H, et al. Clothing style recognition using fashion attribute detection[C]//The 8th International Conference on Mobile Multimedia Communications. New York: ACM,2015:145-148.

[12]

YUE X D, ZHANG C, FUJITA H, et al. Clothing fashion style recognition with design issue graph[J]. Applied Intelligence, 2021, 51(6):3548-3560.

[13]

TANG Z, GE Y M. CNN model optimization and intelligent balance model for material demand forecast[J]. International Journal of System Assurance Engineering and Management, 2022, 13(3):978-986.

[14]

GUO S, HUANG W L, ZHANG X, et al. The iMaterialist fashion attribute dataset[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). New York: IEEE, 2019:3113-3116.

[15]

LIU Z W, LUO P, QIU S, et al. DeepFashion:powering robust clothes recognition and retrieval with rich annotations[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016:1096-1104.

[16]

GE Y Y, ZHANG R M, WANG X G, et al. DeepFashion2:a versatile benchmark for detection,pose estimation,segmentation and re-identification of clothing images[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2019:5332-5340.

[17]

CHEN H Z, GALLAGHER A, GIROD B. Describing clothing by semantic attributes[C]//Computer Vision-ECCV 2012. Berlin: Springer Berlin Heidelberg, 2012:609-623.

[18]

LIU R, JOSEPH A A, XIN M M, et al. Personalized clothing prediction algorithm based on multi-modal feature fusion[J]. International Journal of Engineering and Technology Innovation, 2024, 14(2):216-230.

[19]

ZHU R H, XIN B J, DENG N, et al. Review of fabric defect detection based on computer vision[J]. Journal of Donghua University (English Edition), 2023, 40(1):18-26.

[20]

NANDYAL S, TENGLI N S.An efficient framework for classifying the clothing items based on fashion and fabric of the images[C]//2020 IEEE International Conference on Technology,Engineering,Management for Societal Impact Using Marketing,Entrepreneurship and Talent (TEMSMET). New York: IEEE, 2020:1-5.

[21]

PENG T, ZHOU X Z, LIU J P, et al. A textile fabric classification framework through small motions in videos[J]. Multimedia Tools and Applications, 2021, 80(5):7567-7580.

[22]

AMIN M S, WANG C B, JABEEN S. Fashion sub-categories and attributes prediction model using deep learning[J]. The Visual Computer, 2023, 39(9):3851-3864.

[23]

ZOU X X, KONG X H, WONG W, et al.FashionAI:a hierarchical dataset for fashion understanding[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). New York: IEEE, 2019:296-304.

[24]

XU Z B, ZHANG L, ZHANG Y H, Research on clothing collar types based on complex network extraction and support vector machine classification[J]. Journal of Textile Research, 2021, 42(6):146-152. (in Chinese)

[25]

LU D, WENG Q. A survey of image classification methods and techniques for improving classification performance[J]. International Journal of Remote Sensing, 2007, 28(5):823-870.

[26]

REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.

[27]

RAWAT W, WANG Z H. Deep convolutional neural networks for image classification:a comprehensive review[J]. Neural Computation, 2017, 29(9):2352-2449.

[28]

NOH S K. Recycled clothing classification system using intelligent IoT and deep learning with AlexNet[J]. Computational Intelligence and Neuroscience, 2021, 2021(1):5544784.

[29]

SINGH M, DALMIA S, RANJAN R K, et al. Dress pattern classification using ResNet based convolutional neural networks[C]//Information Systems and Management Science. Cham: Springer International Publishing, 2023:91-103.

[30]

JIANG P Y, ERGU D J, LIU F Y, et al. A review of YOLO algorithm developments[J]. Procedia Computer Science, 2022,199:1066-1073.

[31]

LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016:21-37.

[32]

CHEN C L, ZHENG Z Y, XU T Y, et al. YOLO-based UAV technology:a review of the research and its applications[J]. Drones, 2023, 7(3):190.

[33]

DIWAN T, ANIRUDH G, TEMBHURNE J V. Object detection using YOLO:challenges,architectural successors,datasets and applications[J]. Multimedia Tools and Applications, 2023, 82(6):9243-9275.

[34]

CHUNG M A, LIN Y J, LIN C W. YOLO-SLD:an attention mechanism-improved YOLO for license plate detection[J]. IEEE Access, 2024,12:89035-89045.

[35]

THWE Y, JONGSAWAT N, TUNGKASTHAN A. A semi-supervised learning approach for automatic detection and fashion product category prediction with small training dataset using FC-YOLOv4[J]. Applied Sciences, 2022, 12(16):8068.

[36]

LEE C H, LIN C W. A two-phase fashion apparel detection method based on YOLOv4[J]. Applied Sciences, 2021, 11(9):3782.

[37]

WANG C Y, MARK LIAO H Y, WU Y H, et al.CSPNet:a new backbone that can enhance learning capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). New York: IEEE, 2020:1571-1580.

[38]

HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.

[39]

LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018:8759-8768.

[40]

ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8):8574-8586.

[41]

LI X, WANG W, WU L, et al. Generalized focal loss:learning qualified and distributed bounding boxes for dense object detection[J]. Advances in Neural Information Processing Systems, 2020,33:21002-21012.

[42]

REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union:a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2019:658-666.

[43]

WOO S, PARK J, LEE J Y, et al. CBAM:convolutional block attention module[C]//Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018:3-19.

[44]

YANG L, ZHANG R Y, LI L, et al. SimAM:a simple,parameter-free attention module for convolutional neural networks[C]//The International Conference on Machine Learning. New York: PMLR, 2021:11863-11874.

[45]

ZHANG Q L, YANG Y B. SA-net:shuffle attention for deep convolutional neural networks[C]//2021 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). New York: IEEE, 2021:2235-2239.

[46]

ZHU L, WANG X J, KE Z H, et al. BiFormer:vision transformer with bi-level routing attention[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2023:10323-10333.

[47]

LIU S T, HUANG D, WANG Y H. Learning spatial fusion for single-shot object detection[EB/OL].(2019-11-21)[2024-11-14]. https://arxiv.org/abs/1911.09516.

[48]

ZHANG J R, CHEN Z H, YAN G X, et al. Faster and lightweight:an improved YOLOv5 object detector for remote sensing images[J]. Remote Sensing, 2023, 15(20):4974.

[49]

GUO Y R, SHEN Q, ZHANG S Y, et al. An airborne target recognition model based on SPD,PConv and LADH detection heads[C]//Proceedings of 3rd 2023 International Conference on Autonomous Unmanned Systems (3rd ICAUS 2023). Singapore: Springer Nature Singapore, 2024:325-337.

[50]

HUA B S, TRAN M K, YEUNG S K.Pointwise convolutional neural networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018:984-993.

[51]

DU S J, ZHANG B F, ZHANG P, et al.An improved bounding box regression loss function based on CIOU loss for multi-scale object detection[C]//2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning (PRML). New York: IEEE, 2021:92-98.

[52]

TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU:bounding box regression loss with dynamic focusing mechanism[EB/OL].(2023-01-24)[2024-11-14]. https://arxiv.org/abs/2301.10051.

[53]

WANG C Y, YEH I H, LIAO H Y. YOLOv9:learning what you want to learn using programmable gradient information[EB/OL].(2024-02-29)[2024-11-14]. https://arxiv.org/abs/2402.13616.

[54]

WANG A, CHEN H, LIU L H, et al. YOLOv10:real-time end-to-end object detection[EB/OL].(2024-05-23)[2024-11-14]. https://arxiv.org/abs/2405.14458v2.

[55]

GEVORGYAN Z. SIoU loss:more powerful learning for bounding box regression[EB/OL].(2022-05-25)[2024-11-14]. https://arxiv.org/abs/2205.12740.

[56]

WANG J, XU C, YANG W, YU L. A normalized Gaussian Wasserstein distance for tiny object detection[EB/OL].(2022-06-14)[2024-11-14]. https://arxiv.org/abs/2110.13389.

[57]

SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2):336-359.

Funding

Fundamental Research Funds for the Central Universities, China(2232020G-08)

Fundamental Research Funds for the Central Universities, China(2232020E-03)

Shanghai University Knowledge Service Platform, China(13S107024)

PDF (12094KB)

173

Accesses

0

Citation

Detail

Sections
Recommended

/