Distributed Feedback Quadratic Filter for Estimating Moving Target in Time- Varying Non-Gaussian Systems with Limited Sensing Range

Jinghui SUO , Xuefeng ZHU

Journal of Donghua University(English Edition) ›› 2025, Vol. 42 ›› Issue (6) : 661 -672.

PDF (2697KB)
Journal of Donghua University(English Edition) ›› 2025, Vol. 42 ›› Issue (6) :661 -672. DOI: 10.19884/j.1672-5220.202410003
Information Technology and Artificial Intelligence
research-article

Distributed Feedback Quadratic Filter for Estimating Moving Target in Time- Varying Non-Gaussian Systems with Limited Sensing Range

Author information +
History +
PDF (2697KB)

Abstract

This research considers the tracking problem of a moving target in distributed sensor etworks with a limited sensing range (LSR) affected by non-Gaussian noise.In such sensor networks, observation loss due to LSR is a prevalent issue that has received insufficient attention.We introduce a time-varying random variable to describe whether the sensor observes a moving target at each moment.When a single sensor node is unable to receive information from other nodes, it cannot update its state estimation of the moving target once the target moves beyond this node ’ s observation range.We propose an information flow topology within distributed sensor networks to facilitate the reception of prior state estimation data transmitted by neighboring nodes.Based on this information, a quadratic distributed estimator is designed for each sensor, and an output injection term is introduced to handle unstable systems.Finally, a numerical example is provided to illustrate the effectiveness of the proposed control scheme.

Keywords

non-Gaussian system / quadratic estimation / moving target / time-varying

Cite this article

Download citation ▾
Jinghui SUO, Xuefeng ZHU. Distributed Feedback Quadratic Filter for Estimating Moving Target in Time- Varying Non-Gaussian Systems with Limited Sensing Range. Journal of Donghua University(English Edition), 2025, 42(6): 661-672 DOI:10.19884/j.1672-5220.202410003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YICK J, MUKHERJEE B, GHOSAL D. Wireless sensor network survey[J]. Computer Networks, 2008, 52(12): 2292-2330.

[2]

LI D, WONG K D, HU Y H, et al. Detection, classification, and tracking of targets[J]. IEEE Signal Processing Magazine, 2002, 19(2): 17-29.

[3]

BLEDA A L, FERNÁNDEZ-LUQUE F J, ROSA A, et al. Smart sensory furniture based on WSN for ambient assisted living[J]. IEEE Sensors Journal, 2017, 17(17): 5626-5636.

[4]

KANNA S, DINI D H, XIA Y, et al. Distributed widely linear frequency estimation in unbalanced three phase power systems[J]. Computer Science, 2014, 61(1): 74-83.

[5]

LIAN B S, WAN Y, ZHANG Y, et al. Distributed Kalman consensus filter for estimation with moving targets[J]. IEEE Transactions on Cybernetics, 2022, 52(6): 5242-5254.

[6]

MOIS G, FOLEA S, SANISLAV T. Analysis of three IoT-based wireless sensors for environmental monitoring[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66 (8): 2056-2064.

[7]

XU Y, W J, LIN W Q, et al. On extended state estimation for nonlinear uncertain systems with round-robin protocol[J]. Automatica, 2022, 138: 110154.

[8]

HE X K, XUE W C, ZHANG X C, et al. Distributed filtering for uncertain systems under switching sensor networks and quantized communications[J]. Automatica, 2020, 114: 108842.

[9]

DAS S, MOURA J M F. Distributed Kalman filtering with dynamic observations consensus[J]. IEEE Transactions on Signal Processing, 2015, 63(17): 4458-4473.

[10]

NAHI N. Optimal recursive estimation with uncertain observation[J]. IEEE Transactions on Information Theory, 1969, 15(4): 457-462.

[11]

SINOPOLI B, SCHENATO L, FRANCESCHETTI M, et al. Kalman filtering with intermittent observations[J]. IEEE Transactions on Automatic Control, 2004, 49 (9): 1453-1464.

[12]

ILIĆ N, STANKOVIĆ M S, STANKOVIĆ S S. Adaptive consensus-based distributed target tracking in sensor networks with limited sensing range[J]. IEEE Transactions on Control Systems Technology, 2014, 22(2): 778-785.

[13]

ZHANG Y, SUN L C, HU G Q. Distributed consensus-based multitarget filtering and its application in formation-containment control[J]. IEEE Transactions on Control of Network Systems, 2020, 7(1): 503-515.

[14]

ZAKAI M. On the optimal filtering of diffusion processes[J]. Zeitschrift Für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1969, 11 (3): 230-243.

[15]

MASRELIEZ C. Approximate non-Gaussian filtering with linear state and observation relations[J]. IEEE Transactions on Automatic Control, 1975, 20(1): 107-110.

[16]

MERWE R V D, WAN E. Gaussian mixture sigma-point particle filters for sequential probabilistic inference in dynamic state-space models[C].Proceedings of 2003 IEEE International Conference on Acoustics, Speech, and Signal Processingg. NewYork: IEEE, 2003: 701-704.

[17]

CACACE F, FASANO A, GERMANI A. Quadratic filtering of non-Gaussian systems with intermittent observations[C].Proceedings of 52nd IEEE Conference on Decision and Control. NewYork: IEEE, 2013: 4024-4029.

[18]

LIU Q Y, WANG Z D, HAN Q L, et al. Quadratic estimation for discrete time-varying non-Gaussian systems with multiplicative noises and quantization effects[J]. Automatica, 2020, 113: 108714.

[19]

CACACE F, CONTE F, GERMANI A, et al. Feedback quadratic filtering[J]. Automatica, 2017, 82: 158-164.

[20]

LIU Q Y, ZHENG S Y, WANG Z D, et al. Distributed estimation for multi-agent systems with relative measurements and quantized communication: a feedback quadratic framework[J]. International Journal of Robust and Nonlinear Control, 2023, 33(5): 3164-3184.

[21]

CARRAVETTA F, GERMANI A, RAIMONDI M. Polynomial filtering for linear discrete time non-Gaussian systems[J]. SIAM Journal on Control and Optimization, 1996, 34(5): 1666-1690.

[22]

LIU Q Y, WANG Z D, HE X, et al. Eventbased H ∞ consensus control of multi-agent systems with relative output feedback: the finitehorizon case[J]. IEEE Transactions on Automatic Control, 2015, 60(9): 2553-2558.

Funding

National Natural Science Foundation of China(61803081)

PDF (2697KB)

75

Accesses

0

Citation

Detail

Sections
Recommended

/