All-Cellulose Composites Fabricated by Partially Dissolving Wood Pulp in Cryogenic Aqueous Phosphoric Acid

METASEBIA Gizaw , WANG Bijia , FENG Xueling , RONG Liduo

Journal of Donghua University(English Edition) ›› 2025, Vol. 42 ›› Issue (4) : 380 -390.

PDF (10291KB)
Journal of Donghua University(English Edition) ›› 2025, Vol. 42 ›› Issue (4) : 380 -390. DOI: 10.19884/j.1672-5220.202408001
research-article

All-Cellulose Composites Fabricated by Partially Dissolving Wood Pulp in Cryogenic Aqueous Phosphoric Acid

Author information +
History +
PDF (10291KB)

Abstract

All-cellulose composites(ACCs) are composites that use non-derivatized cellulose as both the matrix and the reinforcement phase. ACC consists entirely of cellulose, and since the reinforcement phase and the matrix have exactly the same chemical properties, they can overcome the problem of poor fiber-matrix adhesion in biocomposites. In this study, ACC was prepared by partially dissolving wood pulp in a cryogenic aqueous phosphoric acid solution, and the effects of dissolution temperature, dissolution time and pressing load on the properties of ACC were investigated. The results showed that a dissolution time of 45 min achieved the optimal reinforcement-matrix ratio. The use of an aqueous ethanol solution at an ethanol mass fraction of 50% as a coagulation bath and a pressing load of 3 000 kg during the drying process achieved the best mechanical properties of ACC, with a tensile strength of 49.3 MPa(approximately 210% higher than that of the untreated wood pulp) and an elastic modulus of 1.6 GPa(approximately 122% higher than that of the untreated wood pulp). The composite's compactness affected ACC's mechanical properties. The air permeability analysis showed that the barrier performance of ACC was also significantly better than that of the untreated wood pulp. With a pressing load of 3 500 kg, the surface water contact angle(WCA) increased to 110.3°(approximately 94% higher than that of the untreated wood pulp), and the air permeability was significantly reduced to 1.1 mm/s, showing its good application prospects in the field of green packaging materials.

Keywords

cellulose / all-cellulose composite(ACC) / cryogenic phosphoric acid / partial dissolution(PD) / sustainable material

Cite this article

Download citation ▾
METASEBIA Gizaw, WANG Bijia, FENG Xueling, RONG Liduo. All-Cellulose Composites Fabricated by Partially Dissolving Wood Pulp in Cryogenic Aqueous Phosphoric Acid. Journal of Donghua University(English Edition), 2025, 42(4): 380-390 DOI:10.19884/j.1672-5220.202408001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GHOLAMPOUR A, OZBAKKALOGLU T. A review of natural fiber composites:properties,modification and processing techniques,characterization,applications[J]. Journal of Materials Science, 2020, 55(3):829-892.

[2]

MALMSTRÖM E, CARLMARK A. Controlled grafting of cellulose fibres:an outlook beyond paper and cardboard[J]. Polymer Chemistry, 2012, 3(7):1702-1713.

[3]

ABDUL KHALIL H P S, BHAT A H, IREANA YUSRA A F. Green composites from sustainable cellulose nanofibrils:a review[J]. Carbohydrate Polymers, 2012, 87(2):963-979.

[4]

KALIA S, DUFRESNE A, CHERIAN B M, et al. Cellulose-based bio-and nanocomposites:a review[J]. International Journal of Polymer Science, 2011, 2011(1):837875.

[5]

TANPICHAI S, BOONMAHITTHISUD A, SOYKEABKAEW N, et al. Review of the recent developments in all-cellulose nanocomposites:properties and applications[J]. Carbohydrate Polymers, 2022,286:119192.

[6]

GEORGOPOULOS S T, TARANTILI P A, AVGERINOS E, et al. Thermoplastic polymers reinforced with fibrous agricultural residues[J]. Polymer Degradation and Stability, 2005, 90(2):303-312.

[7]

NISHINO T, MATSUDA I, HIRAO K. All-cellulose composite[J]. Macromolecules, 2004, 37(20):7683-7687.

[8]

LI J Y, NAWAZ H, WU J, et al. All-cellulose composites based on the self-reinforced effect[J]. Composites Communications, 2018,9:42-53.

[9]

BAGHAEI B, SKRIFVARS M. All-cellulose composites:a review of recent studies on structure,properties and applications[J]. Molecules, 2020, 25(12):2836.

[10]

HUBER T, BICKERTON S, MüSSIG J, et al. Solvent infusion processing of all-cellulose composite materials[J]. Carbohydrate Polymers, 2012, 90(1):730-733.

[11]

DUCHEMIN B J C, NEWMAN R H, STAIGER M P. Structure-property relationship of all-cellulose composites[J]. Composites Science and Technology, 2009, 69(7/8):1225-1230.

[12]

SU H, WANG B J, SUN Z Q, et al. High-tensile regenerated cellulose films enabled by unexpected enhancement of cellulose dissolution in cryogenic aqueous phosphoric acid[J]. Carbohydrate Polymers, 2022,277:118878.

[13]

ZAVREL M, BROSS D, FUNKE M, et al. High-throughput screening for ionic liquids dissolving (ligno-) cellulose[J]. Bioresource Technology, 2009, 100(9):2580-2587.

[14]

ZHU S D, WU Y X, CHEN Q M, et al. Dissolution of cellulose with ionic liquids and its application:a mini-review[J]. Green Chemistry, 2006, 8(4):325-327.

[15]

SEYMOUR R B, STAHL G A. Macromolecular solutions:solvent-property relationships in polymers[M]. New York: Elsevier, 2013.

[16]

LI J H, HAO Z Z, WANG B J, et al. High-tensile chitin films regenerated from cryogenic aqueous phosphoric acid[J]. Carbohydrate Polymers, 2023,312:120826.

[17]

QIAO T, YANG C L, ZHAO L Y, et al. High tensile regenerated cellulose fibers via cyclic freeze-thawing enabled dissolution in phosphoric acid for textile-to-textile recycling of waste cotton fabrics[J]. International Journal of Biological Macromolecules, 2024,277:133911.

[18]

OOSTHUIZEN H, DU TOIT E L, LOOTS M T, et al. A novel cost-effective choline chloride/ionic liquid solvent for all-cellulose composite production[J]. Cellulose, 2023, 30(1):127-140.

[19]

TANPICHAI S, WITAYAKRAN S. All‐cellulose composites from pineapple leaf microfibers:structural,thermal,and mechanical properties[J]. Polymer Composites, 2018, 39(3):895-903.

[20]

JAAFAR M Z, RIDZUAN F F M, KASSIM M H M, et al. The role of dissolution time on the properties of all-cellulose composites obtained from oil palm empty fruit bunch[J]. Polymers, 2013, 15(3):691.

[21]

REDDY K O, MAHESWARI C U, DHLAMINI M S, et al. Preparation and characterization of regenerated cellulose films using Borassus fruit fibers and an ionic liquid[J]. Carbohydrate Polymers, 2017,160:203-211.

[22]

LIU Z H, SUN X F, HAO M Y, et al. Preparation and characterization of regenerated cellulose from ionic liquid using different methods[J]. Carbohydrate Polymers, 2015,117:99-105.

[23]

HILDEBRANDT N C, PILTONEN P, VALKAMA J P, et al. Self-reinforcing composites from commercial chemical pulps via partial dissolution with NaOH/urea[J]. Industrial Crops and Products, 2017,109:79-84.

[24]

SOYKEABKAEW N, ARIMOTO N, NISHINO T, et al. All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres[J]. Composites Science and Technology, 2008, 68(10/11):2201-2207.

[25]

SOYKEABKAEW N, SIAN C, GEA S, et al. All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose[J]. Cellulose, 2009, 16(3):435-444.

[26]

PLACKETT D, ANTURI H, HEDENQVIST M, et al. Physical properties and morphology of films prepared from microfibrillated cellulose and microfibrillated cellulose in combination with amylopectin[J]. Journal of Applied Polymer Science, 2010, 117(6):3601-3609.

[27]

ADAK B, MUKHOPADHYAY S. All-cellulose composite laminates with low moisture and water sensitivity[J]. Polymer, 2018,141:79-85.

[28]

SIRVIÖ J A, VISANKO M, HILDEBRANDT N C. Rapid preparation of all-cellulose composites by solvent welding based on the use of aqueous solvent[J]. European Polymer Journal, 2017,97:292-298.

[29]

LENNHOLM H, IVERSEN T. Estimation of cellulose Ⅰ and Ⅱ in cellulosic samples by principal component analysis of 13C-CP/MAS-NMR-spectra[J]. hfsg, 1995, 49(2):119-126.

[30]

ABOU-YOUSEF H, KAMEL S. Physico-mechanical properties of all-cellulose composites prepared by different approaches from micro-fibrillated bagasse pulp fibers[J]. Materials Today Communications, 2023,35:105672.

[31]

BARANOV A, SOMMERHOFF F, DUCHEMIN B, et al. Toward a facile fabrication route for all-cellulose composite laminates via partial dissolution in aqueous tetrabutylphosphonium hydroxide solution[J]. Composites Part A:Applied Science and Manufacturing, 2021,140:106148.

[32]

WEI Q Y, LIN H, YANG B, et al. Structure and properties of all-cellulose composites prepared by controlling the dissolution temperature of a NaOH/urea solvent[J]. Industrial & Engineering Chemistry Research, 2020, 59(22):10428-10435.

[33]

DUCHEMIN B J C, MATHEW A P, OKSMAN K. All-cellulose composites by partial dissolution in the ionic liquid 1-butyl-3-methylimidazolium chloride[J]. Composites Part A:Applied Science and Manufacturing, 2009, 40(12):2031-2037.

[34]

TANPICHAI S, SAMPSON W W, EICHHORN S J. Stress-transfer in microfibrillated cellulose reinforced poly(lactic acid) composites using Raman spectroscopy[J]. Composites Part A:Applied Science and Manufacturing, 2012, 43(7):1145-1152.

[35]

ALMGREN K M, GAMSTEDT E K, NYGÅRD P, et al. Role of fibre-fibre and fibre-matrix adhesion in stress transfer in composites made from resin-impregnated paper sheets[J]. International Journal of Adhesion and Adhesives, 2009, 29(5):551-557.

[36]

YOUSEFI H, MASHKOUR M, YOUSEFI R. Direct solvent nanowelding of cellulose fibers to make all-cellulose nanocomposite[J]. Cellulose, 2015,22:1189-1200.

[37]

ARéVALO R, PICOT O T, WILSON R M, et al. All-cellulose composites by partial dissolution of cotton fibres[J]. Journal of Biobased Materials and Bioenergy, 2010, 4(2):129-138.

[38]

TERVAHARTIALA T, HILDEBRANDT N C, PILTONEN P, et al. Potential of all-cellulose composites in corrugated board applications:comparison of chemical pulp raw materials[J]. Packaging Technology and Science, 2018, 31(4):173-183.

[39]

PILTONEN P, HILDEBRANDT N C, WESTERLIND B, et al. Green and efficient method for preparing all-cellulose composites with NaOH/urea solvent[J]. Composites Science and Technology, 2016,135:153-158.

[40]

HU Y C, HU F Q, GAN M X, et al. A rapid,green method for the preparation of cellulosic self-reinforcing composites from wood and bamboo pulp[J]. Industrial Crops and Products, 2021,169:113658.

[41]

PANG J H, LIU X, WU M, et al. Fabrication and characterization of regenerated cellulose films using different ionic liquids[J]. Journal of Spectroscopy, 2014, 2014(1):214057.

[42]

HAN D L, YAN L F. Preparation of all-cellulose composite by selective dissolving of cellulose surface in PEG/NaOH aqueous solution[J]. Carbohydrate Polymers, 2010, 79(3):614-619.

Funding

Fundamental Research Funds for the Central Universities, China(2232023G-04)

AI Summary AI Mindmap
PDF (10291KB)

283

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/